Bài giảng Operating system Concepts - Chương 6: CPU Scheduling

ppt 33 trang huongle 3680
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Operating system Concepts - Chương 6: CPU Scheduling", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pptbai_giang_operating_system_concepts_chuong_6_cpu_scheduling.ppt

Nội dung text: Bài giảng Operating system Concepts - Chương 6: CPU Scheduling

  1. Chapter 6: CPU Scheduling n Basic Concepts n Scheduling Criteria n Scheduling Algorithms n Multiple-Processor Scheduling n Real-Time Scheduling n Algorithm Evaluation Operating System Concepts 6.1 Silberschatz, Galvin and Gagne 2002
  2. Basic Concepts n Maximum CPU utilization obtained with multiprogramming n CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait. n CPU burst distribution Operating System Concepts 6.2 Silberschatz, Galvin and Gagne 2002
  3. Alternating Sequence of CPU And I/O Bursts Operating System Concepts 6.3 Silberschatz, Galvin and Gagne 2002
  4. Histogram of CPU-burst Times Operating System Concepts 6.4 Silberschatz, Galvin and Gagne 2002
  5. CPU Scheduler n Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them. n CPU scheduling decisions may take place when a process: 1. Switches from running to waiting state. 2. Switches from running to ready state. 3. Switches from waiting to ready. 4. Terminates. n Scheduling under 1 and 4 is nonpreemptive. n All other scheduling is preemptive. Operating System Concepts 6.5 Silberschatz, Galvin and Gagne 2002
  6. Dispatcher n Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves: F switching context F switching to user mode F jumping to the proper location in the user program to restart that program n Dispatch latency – time it takes for the dispatcher to stop one process and start another running. Operating System Concepts 6.6 Silberschatz, Galvin and Gagne 2002
  7. Scheduling Criteria n CPU utilization – keep the CPU as busy as possible n Throughput – # of processes that complete their execution per time unit n Turnaround time – amount of time to execute a particular process n Waiting time – amount of time a process has been waiting in the ready queue n Response time – amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment) Operating System Concepts 6.7 Silberschatz, Galvin and Gagne 2002
  8. Optimization Criteria n Max CPU utilization n Max throughput n Min turnaround time n Min waiting time n Min response time Operating System Concepts 6.8 Silberschatz, Galvin and Gagne 2002
  9. First-Come, First-Served (FCFS) Scheduling Process Burst Time P1 24 P2 3 P3 3 n Suppose that the processes arrive in the order: P1 , P2 , P3 The Gantt Chart for the schedule is: P1 P2 P3 0 24 27 30 n Waiting time for P1 = 0; P2 = 24; P3 = 27 n Average waiting time: (0 + 24 + 27)/3 = 17 Operating System Concepts 6.9 Silberschatz, Galvin and Gagne 2002
  10. FCFS Scheduling (Cont.) Suppose that the processes arrive in the order P2 , P3 , P1 . n The Gantt chart for the schedule is: P2 P3 P1 0 3 6 30 n Waiting time for P1 = 6; P2 = 0; P3 = 3 n Average waiting time: (6 + 0 + 3)/3 = 3 n Much better than previous case. n Convoy effect short process behind long process Operating System Concepts 6.10 Silberschatz, Galvin and Gagne 2002
  11. Shortest-Job-First (SJR) Scheduling n Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time. n Two schemes: F nonpreemptive – once CPU given to the process it cannot be preempted until completes its CPU burst. F preemptive – if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is know as the Shortest-Remaining-Time-First (SRTF). n SJF is optimal – gives minimum average waiting time for a given set of processes. Operating System Concepts 6.11 Silberschatz, Galvin and Gagne 2002
  12. Example of Non-Preemptive SJF Process Arrival Time Burst Time P1 0.0 7 P2 2.0 4 P3 4.0 1 P4 5.0 4 n SJF (non-preemptive) P1 P3 P2 P4 0 3 7 8 12 16 n Average waiting time = (0 + 6 + 3 + 7)/4 - 4 Operating System Concepts 6.12 Silberschatz, Galvin and Gagne 2002
  13. Example of Preemptive SJF Process Arrival Time Burst Time P1 0.0 7 P2 2.0 4 P3 4.0 1 P4 5.0 4 n SJF (preemptive) P1 P2 P3 P2 P4 P1 0 2 4 5 7 11 16 n Average waiting time = (9 + 1 + 0 +2)/4 - 3 Operating System Concepts 6.13 Silberschatz, Galvin and Gagne 2002
  14. Determining Length of Next CPU Burst n Can only estimate the length. n Can be done by using the length of previous CPU bursts, using exponential averaging. Operating System Concepts 6.14 Silberschatz, Galvin and Gagne 2002
  15. Prediction of the Length of the Next CPU Burst Operating System Concepts 6.15 Silberschatz, Galvin and Gagne 2002
  16. Examples of Exponential Averaging n =0 F n+1 = n F Recent history does not count. n =1 F n+1 = tn F Only the actual last CPU burst counts. n If we expand the formula, we get: n+1 = tn+(1 - ) tn -1 + j +(1 - ) tn -1 + n=1 +(1 - ) tn 0 n Since both and (1 - ) are less than or equal to 1, each successive term has less weight than its predecessor. Operating System Concepts 6.16 Silberschatz, Galvin and Gagne 2002
  17. Priority Scheduling n A priority number (integer) is associated with each process n The CPU is allocated to the process with the highest priority (smallest integer  highest priority). F Preemptive F nonpreemptive n SJF is a priority scheduling where priority is the predicted next CPU burst time. n Problem  Starvation – low priority processes may never execute. n Solution  Aging – as time progresses increase the priority of the process. Operating System Concepts 6.17 Silberschatz, Galvin and Gagne 2002
  18. Round Robin (RR) n Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue. n If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units. n Performance F q large FIFO F q small q must be large with respect to context switch, otherwise overhead is too high. Operating System Concepts 6.18 Silberschatz, Galvin and Gagne 2002
  19. Example of RR with Time Quantum = 20 Process Burst Time P1 53 P2 17 P3 68 P4 24 n The Gantt chart is: P1 P2 P3 P4 P1 P3 P4 P1 P3 P3 0 20 37 57 77 97 117 121 134 154 162 n Typically, higher average turnaround than SJF, but better response. Operating System Concepts 6.19 Silberschatz, Galvin and Gagne 2002
  20. Time Quantum and Context Switch Time Operating System Concepts 6.20 Silberschatz, Galvin and Gagne 2002
  21. Turnaround Time Varies With The Time Quantum Operating System Concepts 6.21 Silberschatz, Galvin and Gagne 2002
  22. Multilevel Queue n Ready queue is partitioned into separate queues: foreground (interactive) background (batch) n Each queue has its own scheduling algorithm, foreground – RR background – FCFS n Scheduling must be done between the queues. F Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation. F Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR F 20% to background in FCFS Operating System Concepts 6.22 Silberschatz, Galvin and Gagne 2002
  23. Multilevel Queue Scheduling Operating System Concepts 6.23 Silberschatz, Galvin and Gagne 2002
  24. Multilevel Feedback Queue n A process can move between the various queues; aging can be implemented this way. n Multilevel-feedback-queue scheduler defined by the following parameters: F number of queues F scheduling algorithms for each queue F method used to determine when to upgrade a process F method used to determine when to demote a process F method used to determine which queue a process will enter when that process needs service Operating System Concepts 6.24 Silberschatz, Galvin and Gagne 2002
  25. Example of Multilevel Feedback Queue n Three queues: F Q0 – time quantum 8 milliseconds F Q1 – time quantum 16 milliseconds F Q2 – FCFS n Scheduling F A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1. F At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q2. Operating System Concepts 6.25 Silberschatz, Galvin and Gagne 2002
  26. Multilevel Feedback Queues Operating System Concepts 6.26 Silberschatz, Galvin and Gagne 2002
  27. Multiple-Processor Scheduling n CPU scheduling more complex when multiple CPUs are available. n Homogeneous processors within a multiprocessor. n Load sharing n Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating the need for data sharing. Operating System Concepts 6.27 Silberschatz, Galvin and Gagne 2002
  28. Real-Time Scheduling n Hard real-time systems – required to complete a critical task within a guaranteed amount of time. n Soft real-time computing – requires that critical processes receive priority over less fortunate ones. Operating System Concepts 6.28 Silberschatz, Galvin and Gagne 2002
  29. Dispatch Latency Operating System Concepts 6.29 Silberschatz, Galvin and Gagne 2002
  30. Algorithm Evaluation n Deterministic modeling – takes a particular predetermined workload and defines the performance of each algorithm for that workload. n Queueing models n Implementation Operating System Concepts 6.30 Silberschatz, Galvin and Gagne 2002
  31. Evaluation of CPU Schedulers by Simulation Operating System Concepts 6.31 Silberschatz, Galvin and Gagne 2002
  32. Solaris 2 Scheduling Operating System Concepts 6.32 Silberschatz, Galvin and Gagne 2002
  33. Windows 2000 Priorities Operating System Concepts 6.33 Silberschatz, Galvin and Gagne 2002