Bài giảng Toán ứng dụng - Chương 3: Nội suy và bình phương cực tiểu - Nguyễn Quốc Lân
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Toán ứng dụng - Chương 3: Nội suy và bình phương cực tiểu - Nguyễn Quốc Lân", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bai_giang_toan_ung_dung_chuong_3_noi_suy_va_binh_phuong_cuc.ppt
Nội dung text: Bài giảng Toán ứng dụng - Chương 3: Nội suy và bình phương cực tiểu - Nguyễn Quốc Lân
- BỘ MƠN TỐN ỨNG DỤNG - ĐHBK PHƯƠNG PHÁP TÍNH – HK 2 0506 CHƯƠNG 3 NỘI SUY VÀ BÌNH PHƯƠNG CỰC TIỂU • TS. NGUYỄN QUỐC LÂN (04/2006)
- NỘI DUNG 1- NỘI SUY ĐA THỨC LAGRANGE 2- SAI SỐ NỘI SUY LAGRANGE 3- NỘI SUY NEWTON (MỐC CÁCH ĐỀU) 4- NỘI SUY GHÉP TRƠN (SPLINE) BẬC BA 5- BÌNH PHƯƠNG CỰC TIỂU
- BÀI TỐN TỔNG QUÁT VỀ NỘI SUY Nội suy: Bảng chứa (n+1) cặp dữ liệu { (xk, yk) }, k = 0 n Mốc nội suy x0 x1 x = xk xn-1 xn Giá trị nội suy y0 y1 y = ? yn-1 yn xk : mốc nội suy, yk : giá trị (hàm) nội suy Từ bảng này, nội suy giá trị ybảng tại điểm x = ? Nội suy đa thức: Xác định đa thức y = P(x) thoả điều kiện nội suy P(xk) = yk, k = 0 n ybảng P( )
- NỘI SUY ĐA THỨC LAGRANGE Bảng chứa (n+1) cặp số liệu {(xk,yk)} , k = 0 n ! đa thức L(x), bậc n, thoả đ/kiện nội suy L(xk) = yk, k = 0 n Tìm đa thức nội suy Minh hoạ bảng 3 dữ liệu: {(xk,yk)} , k=0 2 Tại x = 3, y ? Mốc nội suy xk 2 2.5 4 bảng Giá Trị nội suy yk 0.5 0.4 0.25 Cách 1: 3 mốc n = 2 L(x) = ax2 + bx + c (3 hệ số cần tìm) ybảng L(3) = 0.325
- VÍ DỤ SAI SỐ Sai số: Ước lượng sai số của việc xấp xỉ giá trị bằng đa thức nội suy Lagrange bậc hai hàm y = xây dựng tại các mốc x0 = 100, x1 = 121, x2 = 144. Yêu cầu: Làm trịn kết quả (sai số) đến chữ số lẻ thứ 4 Giải: Kết quả: Nhắc lại: Sai số: luơn làm trịn lên!
- NHIỀU MỐC ĐA THỨC NỘI SUY CƠ SỞ Đa thức nội suy cơ sở tại xk: Lk(xk) = 1, Lk(xi) = 0 i k Mốc NS 2 2.5 4 3 mốc 3 ĐT NSCS Giá Trị NS 0.5 0.4 0.25 ĐTNSCS L0(x) 1 0 0 ĐTNSCS L1(x) 0 1 0 ĐTNSCS L2(x) 0 0 1 Đa thức nội suy: L(x) = 0.5L0(x) + 0.4L1(x) + 0.25L2(x) Thiết lập cơng thức tổng quát với (n + 1) mốc {(xk, yk)}?
- CƠNG THỨC TỔNG QUÁT (n+1) mốc (n+1) đa thức nội suy cơ sở. Đa thức nội suy cơ sở Lk(x) tại xk (k = 0 n): Lk(xk) = 1, Lk(xi) = 0 i k: Ưu điểm: Cơng thức tổng quát cho đa thức nội suy L(x) Chỉ phụ thuộc bộ mốc {xk} (0 k n), khơng phụ thuộc yk
- VÍ DỤ Bảng 4 mốc 1, 2, 3, 4 ; 4 giá trị 5, 7, 8, 9. Viết ra biểu thức các đa thức nội suy cơ sở. Tính giá trị bảng tại x = 3.5? Viết biểu thức Lk(x) (Khơng tính!) Thay x Giá trị
- NỘI SUY NEWTON – MỐC CÁCH ĐỀU Bảng {(xk,yk)} , k = 0 n, mốc nội suy cách đều: x0, x1 = x0 + h, x2 = x1 + h xn = xn-1 + h. Lập bảng sai phân : Mốc NS Gtrị NS x0 y0 x1 y1 x2 y2 x3 y3 Cấp 1: y = y – y VD: Bảng sai 2 k k+1 k xk yk y y 1 2 Ví dụ: y0 = y1 – y0 phân 3 mốc 2 4 2 yk = yk+1 – yk (cách đều) 3 7
- ĐA THỨC NỘI SUY NEWTON Đa thức nội suy Newton tiến: x x0 (đầu bảng) x = x0 +th Đa thức nội suy tiến: Đa thức theo t & Sai phân nằm trên đường chéo tiến Đa thức nội suy Newton lùi: x xn (cuối bảng) x = xn + th Đa thức nội suy lùi: Sai phân nằm trên đường chéo lùi (từ cuối bảng đi lên)
- VÍ DỤ NỘI SUY NEWTON Cho bảng giá trị sinx từ 15 55. Xây dựng đa thức nội suy tiến (lùi) cấp 3 & tính sin16 (sin54) x y y 2y 3y 15 0.2588 20 0.3420 25 0.4226 30 0.5 35 0.5736 40 0.6428 45 0.7071 50 0.7660 55 0.8192
- VÍ DỤ NỘI SUY NEWTON Đa thức nội suy tiến: x 15 x = 16 t = 0.2 N1(0.2) = 0. 2756 sin16 = 0. 2756 Đa thức nội suy lùi: x 55 x = 54 t = –0.2 N2(–0.2) = 0.80903 sin54 = 0. 8090 Câu hỏi: Tính tại x = 54 với Nội suy tiến. Nhận xét? Tất cả sai phân: Nội suy Newton Lagrange!
- HIỆN TƯỢNG RUNGE Nội suy hàm f(x) = 1/(1+ 25x2), x [-1, 1] bằng đa thức nội suy, 5 mốc cách đều. Tính L(0.95), so sánh giá trị tính được với giá trị chính xác f(0.95) Lập bảng nội suy: 5 mốc cách đều trên [–1, 1] x0 = –1, x1 = –0.5, x2 = 0, x3 = 0.5, x4 = 1 & yk = f(xk) xk –1 –0.5 0. 0.5 1. yk Giá trị L(0.95) = Giá trị chính xác f(0.95) = 0.04
- KẾT QUẢ So sánh đồ thị hàm ban đầu f(x) và đa thức nội suy P4(x) Tăng số nút cĩ thể khiến sai số tăng!
- NỘI SUY GHÉP TRƠN Nội suy Lagrange: Bậc quá lớn Đồ thị phức tạp Thay đa thức nội suy bậc n bằng đa thức nội suy bậc thấp (bậc 1, 2, 3 ) trên từng đoạn [xk, xk+1], k = 0 n – 1
- Ý TƯỞNG NỘI SUY GHÉP TRƠN BẬC 3
- XÂY DỰNG HÀM NỘI SUY GHÉP TRƠN BẬC 3 Tìm hàm bậc 3 trên từng đoạn, liên tục và cĩ đạo hàm đến cấp 2 nội suy bảng số liệu sau: x 1 2 3 y 2 3 –4 Hàm nội suy: Dạng thuận tiện hơn:
- NỘI SUY SPLINE (GHÉP TRƠN) BẬC 3 1/ Hàm dạng bậc 3 trên từng đoạn [xk,xk+1], k = 0 n –1 2/ Điều kiện nội suy: S(xk) = yk, k = 0, 1 n 3/ Ghép trơn: 4/ Điều kiện biên tự nhiên: S’’(x0) = S’’(xn) = 0
- GIẢI THUẬT NỘI SUY SPLINE BẬC 3 I/ Độ dài hk = xk+1 – xk, k = 0 n –1. Hệ số ak = yk, k = 0 n T II/ c = [c0, cn] là nghiệm (cn = S’’(xn)/2) hệ Ac = e với Bước III:
- VÍ DỤ NỘI SUY SPLINE (GHÉP TRƠN) BẬC 3 Lập hàm nội suy spline bậc 3 g(x) thoả điều kiện biên tự nhiên và nội suy bảng sau Mốc NS x0 = 1 x1 = 2 x2 = 3 x3 = 4 Giá trị NS y0 = 2 y1 = 1 y2 = 3 y3 = 2 Hàm spline Bước I: Độ dài bước chia Hệ số:
- BẢNG TÍNH NỘI SUY SPLINE (GHÉP TRƠN) BẬC 3 k hk ak bk ek ck dk 0 1 2 0 0 1 1 1 2 1 3 3 2 0 0 T Bước II: c3 = g”(x3)/2 c = [c0, c1, c2, c3] là nghiệm III/ bk, dk, 0 k 2:
- BÌNH PHƯƠNG CỰC TIỂU Thực nghiệm: Thống kê lượng mưa 12 tháng & vẽ đồ thị Tháng 1 2 3 4 5 6 7 8 Lượng mưa 550 665 540 580 610 605 570
- PHƯƠNG PHÁP BÌNH PHƯƠNG CỰC TIỂU (BPCT) Nhiều dữ liệu & yk cĩ sai số: Aùp đặt L(xk) = yk: vơ nghĩa! Giải quyết: h(x) xấp xỉ bảng {(xk, yk)} theo nghĩa BPCT
- TRƯỜNG HỢP TUYẾN TÍNH h tuyến tính: h(x) = ax + b Điểm dừng: Giải hệ 2 phương trình 2 ẩn tìm a, b. So với đường cong y 2 = h1(x) Tổng S = (h1(xk) – yk) : càng bé càng tốt VD: Tìm hàm bậc 1 xấp xỉ bảng sau theo nghĩa BPCT xk 1 2 3 4 5 6 7 8 9 10 yk 1.3 3.5 4.2 5.0 7.0 8.8 10.1 12.5 13. 15.6
- ĐA THỨC BÌNH PHƯƠNG CỰC TIỂU BẬC CAO h(x) = ax2 + bx + c Điểm dừng: Tổng quát: Điểm dừng hàm tổng bình phương độ lệch h = ax2 + bx
- HÀM MŨ y = h(x) = beax lny = ax + lnb Tương quan bậc 1 giữa lnyk & xk. Lập bảng {(xk, lnyk)} xác định a & lnb. 2 VD: Xấp xỉ k xk yk lnyk xk xklnyk 1 1.00 5.10 1.629 1.0000 1.629 bảng số với 2 1.25 5.79 1.756 1.5625 2.195 p/pháp bình 3 1.50 6.53 1.876 2.2500 2.814 phương cực 4 1.75 7.45 2.008 3.0625 3.514 5 2.00 8.46 2.135 4.0000 4.270 tiểu 7.50 9.404 11.875 14.422