Đồ án đại học hệ chính quy ngành công nghệ thông tin - Phạm Văn Bình

pdf 42 trang huongle 2030
Bạn đang xem 20 trang mẫu của tài liệu "Đồ án đại học hệ chính quy ngành công nghệ thông tin - Phạm Văn Bình", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfdo_an_dai_hoc_he_chinh_quy_nganh_cong_nghe_thong_tin_pham_va.pdf

Nội dung text: Đồ án đại học hệ chính quy ngành công nghệ thông tin - Phạm Văn Bình

  1. 1 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC DÂN LẬP HẢI PHÒNG o0o HIỆU CHỈNH ÁNH SÁNG TRONG ẢNH ĐỒ ÁN TỐT NGHIỆP ĐẠI HỌC HỆ CHÍNH QUY NGÀNH CÔNG NGHỆ THÔNG TIN Sinh viên thực hiên: PHẠM VĂN BÌNH Giáo viên hƣớng dẫn: PGS.TS ĐỖ NĂNG TOÀN Mã số sinh viên: 111230 Hải Phòng - 2011
  2. 2 MỤC LỤC MỤC LỤC 1 DANH MỤC HÌNH VẼ 4 MỞ ĐẦU 5 CHƢƠNG 1: KHÁI QUÁT VỀ XỬ LÝ ẢNH VÀ HIỆU CHỈNH ÁNH SÁNG . 6 1.1 KHÁI QUÁT VỀ XỬ LÝ ẢNH 6 1.1.1 Xử lý ảnh là gì? 6 1.1.2 Một số vấn đề cơ bản trong xử lý ảnh 8 1.2 ÁNH SÁNG VÀ HIỆU CHỈNH ÁNH SÁNG TRONG ẢNH 16 1.2.1 Ánh sáng và màu sắc trong ảnh số là gì? 16 1.2.2 Một số hệ màu 16 1.2.3 Hiệu chỉnh ánh sáng trong ảnh 20 CHƢƠNG 2: MỘT SỐ PHƢƠNG PHÁP HIỆU CHỈNH MÀU SẮC VÀ ÁNH SÁNG TRONG ẢNH 22 2.1 Hiệu chỉnh ánh sáng 22 2.2 Hiệu chỉnh độ tƣơng phản 22 2.3 Hiệu chỉnh gamma 23 2.3.1 Thuật toán 24 2.3.2 Cải tiến thuật toán 24 2.3.3 Một số kết quả ví dụ 25 2.4 Cân bằng màu 25 2.4.1 Thực hiện 26 2.4.2 Phƣơng pháp phân loại 26 2.4.3 Phƣơng pháp biểu đồ(Histogram) 27 2.4.4 Mã giả 28 2.4.5 Độ chính xác cao hơn 29 2.4.6 Các trƣờng hợp đặc biệt 30
  3. 3 2.4.7 Ảnh màu 30 CHƢƠNG 3: CHƢƠNG TRÌNH THỬ NGHIỆM 32 3.1 Giới thiệu chƣơng trình 32 3.2 Các chức năng của chƣơng trình 32 3.3 Ví dụ về nhóm chức năng “Xử lý ảnh” 33 3.3.1 Chức năng “Hiệu chỉnh ánh sáng” 33 3.3.2 Chức năng “Hiệu chỉnh độ tƣơng phản” 34 3.3.3 Chức năng “Hiệu chỉnh gamma” 34 3.3.4 Chức năng “Cân bằng màu” 35 KẾT LUẬN 37 TÀI LIỆU THAM KHẢO 38 PHỤ LỤC 39
  4. 4 DANH MỤC HÌNH VẼ Hình 1.1. Quá trình xử lý ảnh. Hình 1.2. Các bƣớc cơ bản trong một hệ thống xử lý ảnh. Hình 1.3. Quan hệ giữa các điểm ảnh. Hình 1.4. Lƣợc đồ xám của ảnh. Hình 1.5. Ảnh thu nhận và ảnh mong muốn. Hình 1.6. Sơ đồ liên hệ giữa không gian màu RGB và CMY. Hình 1.7. Mô hình màu HSI. Hình 1.8. Mô hình màu HSV. Hình 1.9. So sánh giữa HSL và HSV. Hình 1.10. Ánh sáng làm thay đổi màu sắc vật thể. Hình 1.11. Ảnh chụp trong điều kiện ánh sáng tối. Hình 2.1. Giá trị đầu vào màn hình. Hình 2.2. Giá trị xuất ra màn hình. Hình 2.3. Quá trình hiệu chỉnh gamma. Hình 2.4. Ví dụ về hiệu chỉnh gamma. Hình 3.1. Giao diện chính của chƣơng trình. Hình 3.2. Ví dụ về chứ năng “Hiệu chỉnh ánh sáng” với tham số là 76. Hình 3.3. Ví dụ chức năng “Hiệu chỉnh độ tƣơng phản” với tham số là 2.2 Hình 3.4. Nhập tham số cho chức năng hiệu chỉnh gamma. Hình 3.5. Và thu đƣợc ảnh kết quả hiệu chỉnh gamma. Hình 3.6. Nhập tham số đầu vào cân bằng màu. Hình 3.7. Và kết quả thu đƣợc cân bằng màu.
  5. 5 MỞ ĐẦU Trong xã hội hiện nay, ảnh số đóng một vai trò quan trọng trong đời sống con ngƣời. Ảnh số không chỉ đƣợc sử dụng cuộc sống hằng ngày mà nó còn góp phần quan trọng trong việc cung cấp thông tin về vật thể, sự kiện trong công tác nghiên cứu khoa học. Đối với một bức ảnh, ánh sáng có vai trò quan trọng, ảnh hƣởng trực tiếp ảnh hƣởng tới chất lƣợng của bức ảnh. Hiện nay, có rất nhiều phƣơng pháp hiệu chỉnh ánh sáng từ đơn giản nhƣ tăng giảm độ sáng, hiệu chỉnh gamma đến các phƣơng pháp phức tạp hơn nhƣ hồi phục màu của vật thể bị ánh sáng chiếu vào gây thay đổi cảm nhận màu sắc Không chỉ vậy, bài toán còn từ chỉ có một nguồn sáng tới nhiều nguồn sáng, ánh sáng chiếu đều và ánh sáng chiếu không đều để phục nhu cầu của con ngƣời. Hiệu chỉnh ánh sáng đƣợc quan tâm nhƣ vậy vì nó có ứng dụng rất lớn trong thực tế. Sau đây là một vài ứng dụng trong thực tế của hiệu chỉnh ánh sáng: Hồi phục màu sắc của vật thể chịu tác động của ánh sáng. Trong nhận dạng, một số trƣờng hợp khó khăn do ánh sáng gây ra. Hiệu chỉnh ánh sáng có thể giải quyết vấn đề này. Tìm kiếm, so sánh ảnh. Chức năng tự động hiệu chỉnh ánh sáng trong các máy ảnh số hiện nay. Nâng cao chất lƣợng ánh sáng trong ảnh. Nội dung đồ án tốt nghiệp gồm: Chƣơng 1: Nêu khái quái và các khái niệm của xử lý ảnh số và hiệu chỉnh ánh sáng trong ảnh số. Chƣơng 2: Nêu một số phƣơng pháp và thuật toán hiệu chỉnh ánh sáng trong ảnh số. Chƣơng 3: Giời thiệu chƣơng trình hiệu chỉnh ánh sáng và chạy thử nghiệm chƣơng trình.
  6. 6 CHƢƠNG 1: KHÁI QUÁT VỀ XỬ LÝ ẢNH VÀ HIỆU CHỈNH ÁNH SÁNG 1.1 KHÁI QUÁT VỀ XỬ LÝ ẢNH 1.1.1 Xử lý ảnh là gì? Con ngƣời thu nhận thông tin qua các giác quan, trong đó thị giác đóng vai trò quan trọng nhất. Những năm trở lại đây với sự phát triển của phần cứng máy tính, xử lý ảnh và đồ hoạ đó phát triển một cách mạnh mẽ và có nhiều ứng dụng trong cuộc sống. Xử lý ảnh và đồ hoạ đóng một vai trò quan trọng trong tƣơng tác ngƣời - máy. Quá trình xử lý ảnh đƣợc xem nhƣ là quá trình thao tác ảnh đầu vào nhằm cho ra kết quả mong muốn. Kết quả đầu ra của một quá trình xử lý ảnh có thể là một ảnh “tốt hơn” hoặc một kết luận. ẢNH TỐT HƠN ẢNH XỬ LÝ ẢNH KẾT LUẬN Hình 1.1. Quá trình xử lý ảnh Ảnh có thể xem là tập hợp các điểm ảnh và mỗi điểm ảnh đƣợc xem nhƣ là đặc trƣng cƣờng độ sáng hay một dấu hiệu nào đó tại một vị trí nào đó của đối tƣợng trong không gian và nó có thể xem nhƣ một hàm n biến P(c1, c2, , cn). Do đó, ảnh trong xử lý ảnh có thể xem nhƣ ảnh n chiều. Sơ đồ tổng quát của một hệ thống xử lý ảnh: Hình 1.2. Các bước cơ bản trong một hệ thống xử lý ảnh Thu nhận ảnh (Image acquisition)
  7. 7 Các thiết bị thu nhận ảnh có hai loại chính ứng với hai loại ảnh thông dụng Raster và Vector. Các thiết bị thu nhận ảnh thông thƣờng Raster là camera. Các thiết bị thu nhận ảnh thông thƣờng Vector là sensor hoặc bộ số hoá (digitalizer) hoặc đƣợc chuyển đổi từ ảnh Raster . Các thiết bị thu ảnh thông thƣờng gồm camera cộng với bộ chuyển đổi tƣơng tự số AD (Analog to Digital) hoặc scanner chuyên dụng. Các thiết bị thu nhận ảnh này có thể cho ảnh đen trắng hoặc ảnh màu. Đầu ra của scanner là ảnh ma trận số mà ta quen gọi là bản đồ ảnh (ảnh Bitmap). Bộ số hoá (digitalizer) sẽ tạo ảnh vectơ có hƣớng. Nhìn chung, các hệ thống thu nhận ảnh thực hiện hai quá trình: Cảm biến: biến đổi năng lƣợng quang học (ánh sáng) thành năng lƣợng điện. Tổng hợp năng lƣợng điện thành ảnh. Tiền xử lý (Image processing) Tiền xử lý là bƣớc tăng cƣờng ảnh để nâng cao chất lƣợng ảnh. Do những nguyên nhân khác nhau: có thể do chất lƣợng thiết bị thu nhận ảnh , do nguồn sáng hay do nhiễu, ảnh có thể bị suy biến. Do vậy cần phải tăng cƣờng và khôi phục lại ảnh để làm nổi bật một số đặc tính chính của ảnh, hay làm cho ảnh gần giống nhất với trạng thái gốc - trạng thái trƣớc khi ảnh bị biến dạng. Trích chọn đặc điểm (Feature extraction) Vì lƣợng thông tin chứa trong ảnh là rất lớn, trong khi đó đa số ứng dụng chỉ cần một số thông tin đặc trƣng nào đó, cần có bƣớc trích chọn đặc điểm để giảm lƣợng thông tin khổng lồ ấy. Các đặc trƣng của ảnh thƣờng gồm: mật độ xám, phân bố xác suất, phân bố không gian, biên ảnh. Hậu xử lý Nếu lƣu trữ ảnh trực tiếp từ các ảnh thô (brut image) theo kiểu bản đồ ảnh đòi hỏi dung lƣợng bộ nhớ lớn, tốn kém mà nhiều khi không hiệu quả theo quan điểm ứng dụng. Thƣờng ngƣời ta không biểu diễn toàn bộ ảnh thô mà tập trung đặc tả các đặc trƣng của ảnh nhƣ biên ảnh (boundary) hay vùng ảnh (region) . Một số phƣơng pháp biểu diễn thƣờng dùng:  Biểu diễn mã loạt dài (Run-Length Code).  Biểu diễn mã xích (Chaine -Code).  Biểu diễn mã tứ phân (Quad-Tree Code).
  8. 8 Ảnh là một đối tƣợng khá phức tạp về đƣờng nét, độ sáng tối, dung lƣợng điểm ảnh, môi trƣờng để thu ảnh phong phú kéo theo nhiễu. Trong nhiều khâu xử lý và phân tích ảnh ngoài việc đơn giản hóa các phƣơng pháp toán học đảm bảo tiện lợi cho xử lý, ngƣời ta mong muốn bắt chƣớc quy trình tiếp nhận và xử lý ảnh theo cách của con ngƣời. Trong các bƣớc xử lý đó, nhiều khâu hiện nay đã xử lý theo các phƣơng pháp trí tuệ con ngƣời. Vì vậy, ở đây các cơ sở tri thức- hệ quyết định đƣợc phát huy. Đối sánh rút ra kết luận So sánh ảnh sau bƣớc hậu xử lý với mẫu chuẩn hoặc ảnh đã đƣợc lƣu trữ từ trƣớc, phục vụ cho các mục đích nhận dạng và nội suy ảnh. 1.1.2 Một số vấn đề cơ bản trong xử lý ảnh 1.1.2.1 Một số khái niệm cơ bản * Ảnh và điểm ảnh: Ảnh trong thực tế là một ảnh liên tục về không gian và về giá trị độ sáng. Để có thể xử lý ảnh bằng máy tính cần thiết phải tiến hành số hoá ảnh. Trong quá trình số hoá, ngƣời ta biến đổi tín hiệu liên tục sang tín hiệu rời rạc thông qua quá trình lấy mẫu (rời rạc hoá về không gian) và lƣợng hoá thành phần giá trị mà về nguyên tắc bằng mắt thƣờng không phân biệt đƣợc hai điểm kề nhau. Trong quá trình này, ngƣời ta sử dụng khái niệm Picture element mà ta quen gọi hay viết là Pixel - điểm ảnh. Điểm ảnh đƣợc xem nhƣ là dấu hiệu hay cƣờng độ sáng tại một toạ độ trong không gian của đối tƣợng . Ảnh đƣợc xem nhƣ là một tập hợp các điểm ảnh. Khi đƣợc số hoá, nó thƣờng đƣợc biểu diễn bởi bảng hai chiều I(n,p): n dòng và p cột. Ta nói ảnh gồm n x p điểm ảnh. Ngƣời ta thƣờng kí hiệu I(x,y) để chỉ một điểm ảnh. Thƣờng giá trị của n chọn bằng p và bằng 256. Một điểm ảnh có thể lƣu trữ trên 1, 4, 8 hay 24 bit . Về mặt toán học có thể xem ảnh là một hàm hai biến f(x,y) với x, y là các biến tọa độ. Giá trị số ở điểm (x,y) tƣơng ứng với giá trị xám hoặc độ sáng của ảnh (x là các cột, y là các hàng). Giá trị của hàm ảnh f(x,y) đƣợc hạn chế trong phạm vi của các số nguyên dƣơng: 0 ≤ f(x,y) ≤ fmax . Thông thƣờng đối với ảnh xám, giá trị fmax là 255 ( 28=256) bởi vì mỗi phần tử ảnh đƣợc mã hóa bởi một byte. Khi quan tâm đến ảnh màu, ta có thể mô tả màu qua ba hàm số: thành phần màu đỏ qua hàm
  9. 9 R(x,y), thành phần màu lục qua hàm G(x,y) và thành phần màu lam qua hàm B(x,y). Số điểm ảnh tạo nên một ảnh gọi là độ phân giải (resolusion). Độ phân giải thƣờng đƣợc biểu thị bằng số điểm ảnh theo chiều dọc và chiều ngang của ảnh. Ảnh có độ phân giải càng cao càng rõ nét. Nhƣ vậy, ảnh càng to thì càng bị vỡ hạt, độ mịn càng kém. Ảnh có thể đƣợc biểu diễn theo mô hình Vector hoặc mô hình Raster: Mô hình Raster Đây là mô hình biểu diễn ảnh thông dụng nhất hiện nay. Ảnh đƣợc biểu diễn dƣới dạng ma trận các điểm ảnh. Tùy theo nhu cầu thực tế mà mỗi điểm ảnh có thể đƣợc biểu diễn bởi một hay nhiều bit. Mô hình Raster rất thuận lợi cho hiển thị và in ấn . Khi xử lý các ảnh Raster, chúng ta quan tâm đến mối quan hệ trong vùng lân cận của các điểm ảnh. Các điểm ảnh có thể xếp hàng trên một lƣới (Raster) hình vuông, lƣới hình lục giác hoặc theo một cách hoàn toàn ngẫu nhiên với nhau. Cách sắp xếp theo hình vuông là đƣợc quan tâm đến nhiều nhất và có hai loại: điểm 4 láng giềng (4 liền kề) hoặc 8 láng giềng (8 liền kề) đƣợc minh hoạ nhƣ sau: Hình 1.3. Quan hệ giữa các điểm ảnh Mô hình Vector Biểu diễn ảnh ngoài mục đích tiết kiệm không gian lƣu trữ, dễ dàng cho hiển thị và in ấn, còn phải đảm bảo dễ dàng trong lựa chọn, sao chép, di chuyển, tìm kiếm Theo những yêu cầu này, kỹ thuật biểu diễn Vector tỏ ra ƣu việt hơn . Trong mô hình Vector ngƣời ta sử dụng hƣớng giữa các Vector của điểm ảnh lân cận để mã hoá và tái tạo hình ảnh ban đầu. Ảnh Vector đƣợc thu nhận trực tiếp từ các thiết bị số hóa nhƣ Digital hoặc đƣợc chuyển đổi từ ảnh Raster thông qua các chƣơng trình số hóa. Công nghệ phần cứng cung cấp những thiết bị xử lý với tốc độ nhanh
  10. 10 và chất lƣợng cao cho cả đầu vào và ra, nhƣng lại chỉ hỗ trợ cho ảnh Raster. Do vậy, những nghiên cứu về biểu diễn Vector đều tập trung chuyển đổi từ ảnh Raster . *Mức xám và lược đồ mức xám Mức xám (Gray level) Mức xám là kết quả sự mã hoá tƣơng ứng một cƣờng độ sáng của mỗi điểm ảnh với một giá trị số - kết quả của quá trình lƣợng hoá. Cách mã hoá kinh điển thƣờng dùng 16, 32 hay 64 mức. Mã hoá 256 mức là phổ dụng nhất do lý do kỹ thuật. Vì 28 = 256 (0, 1, , 255), nên với 256 mức, mỗi điểm ảnh sẽ đƣợc mã hoá bởi 8 bit . Ảnh có hai mức xám đƣợc gọi là ảnh nhị phân. Mỗi điểm ảnh của ảnh nhị phân chỉ có thể là 0 hoặc 1. Ảnh có mức xám lớn hơn 2 đƣợc gọi là ảnh đa cấp xám hay ảnh màu. Ảnh đen trắng là ảnh chỉ có hai màu đen và trắng, mức xám ở các điểm ảnh có thể khác nhau. Với ảnh màu, có nhiều cách tổ hợp màu khác nhau. Theo lý thuyết màu do Thomas đƣa ra từ năm 1802, mọi màu đều có thể tổ hợp từ 3 màu cơ bản: Red(đỏ), Green(lục) và Blue(lam). Mỗi điểm ảnh của ảnh màu lƣu trữ trong 3 bytes và do đó ta có 28x3 = 224 màu ( cỡ 16,7 triệu màu). Ảnh xám là ảnh chỉ có các mức xám. Thực chất màu xám là màu có các thành phần R, G, B trong hệ thống màu RGB có cùng cƣờng độ. Tƣơng ứng với mỗi điểm ảnh sẽ có một mức xám xác định. Lƣợc đồ mức xám (Histogram) Lược đồ mức xám của một ảnh, từ này về sau ta qui ƣớc gọi là lược đồ xám hay biểu đồ tần suất, là một hàm cung cấp tần suất xuất hiện của mỗi mức xám. Lƣợc đồ xám đƣợc biểu diễn trong hệ tọa độ vuông góc Oxy. Trong hệ tọa độ này, trục hoành biểu diễn cho số mức xám từ 0 đến N, N là số mức xám (256 mức trong trƣờng hợp ảnh xám mà chúng ta đang xét). Trục tung biểu diễn số điểm ảnh cho một mức xám (số điểm ảnh có cùng mức xám). Cũng có thể biểu diễn khác đi một chút: trục tung là tỉ lệ số điểm ảnh có cùng mức xám trên tổng số điểm ảnh.
  11. 11 Hình 1.4. Lược đồ xám của ảnh Lƣợc đồ xám cung cấp rất nhiều thông tin về phân bố mức xám của ảnh. Theo thuật ngữ của xử lý ảnh gọi là tính động của ảnh. Tính động của ảnh cho phép phân tích trong khoảng nào đó phân bố phần lớn các mức xám của ảnh: ảnh rất sáng hay ảnh rất đậm. Nếu ảnh sáng, lƣợc đồ xám nằm bên phải (mức xám cao), còn ảnh đậm lƣợc đồ xám nằm bên trái (mức xám thấp). 1.1.2.2 Nắn chỉnh biến dạng Ảnh thu nhận thƣờng bị biến dạng do các thiết bị quang học và điện tử. P P ’ i i f(Pi) Ảnh thu nhận Ảnh mong muốn Hình 1.5. Ảnh thu nhận và ảnh mong muốn Để khắc phục ngƣời ta sử dụng các phép chiếu, các phép chiếu thƣờng đƣợc xây dựng trên tập các điểm điều khiển. Giả sử (Pi, Pi’) i = 1, n có n các tập điều khiển Tìm hàm f: Pi f (Pi) sao cho n ' 2 f (Pi ) Pi min i 1
  12. 12 Giả sử ảnh bị biến đổi chỉ bao gồm: Tịnh tiến, quay, tỷ lệ, biến dạng bậc nhất tuyến tính. Khi đó hàm f có dạng: f (x, y) = (a1x + b1y + c1, a2x + b2y + c2) Ta có: n n ' 2 ' 2 ' 2 ( f (Pi) Pi ) a1xi b1 yi c1 xi a2 xi b2 yi c2 yi i 1 i 1 Để cho min n n n n 2 ' 0 a1 xi b1 xi yi c1 xi xi xi a1 i 1 i 1 i 1 i 1 n n n n 0 a x y b y 2 c y y x ' b 1 i i 1 i 1 i i i 1 i 1 i 1 i 1 i 1 n n n ' 0 a1 xi b1 yi nc1 xi c1 i 1 i 1 i 1 Giải hệ phƣơng trình tuyến tính tìm đƣợc a1, b1, c1 Tƣơng tự tìm đƣợc a2, b2, c2 Xác định đƣợc hàm f 1.1.2.3 Khử nhiễu Có 2 loại nhiễu cơ bản trong quá trình thu nhận ảnh Nhiều hệ thống: là nhiễu có quy luật có thể khử bằng các phép biến đổi Nhiễu ngẫu nhiên: vết bẩn không rõ nguyên nhân khắc phục bằng các phép lọc 1.1.2.4 Chỉnh mức xám Nhằm khắc phục tính không đồng đều của hệ thống gây ra. Thông thƣờng có 2 hƣớng tiếp cận: Giảm số mức xám: Thực hiện bằng cách nhóm các mức xám gần nhau thành một bó. Trƣờng hợp chỉ có 2 mức xám thì chính là chuyển về ảnh đen trắng. Ứng dụng: in ảnh màu ra máy in đen trắng
  13. 13 Tăng số mức xám: Thực hiện nội suy ra các mức xám trung gian bằng kỹ thuật nội suy. Kỹ thuật này nhằm tăng cƣờng độ mịn cho ảnh. 1.1.2.5 Phân tích ảnh Là khâu quan trọng trong quá trình xử lý ảnh để tiến tới hiểu ảnh. Trong phân tích ảnh việc trích chọn đặc điểm là một bƣớc quan trọng. Các đặc điểm của đối tƣợng đƣợc trích chọn tuỳ theo mục đích nhận dạng trong quá trình xử lý ảnh. Có thể nêu ra một số đặc điểm của ảnh sau đây: Đặc điểm không gian: Phân bố mức xám, phân bố xác suất, biên độ, điểm uốn v.v Đặc điểm biến đổi: Các đặc điểm loại này đƣợc trích chọn bằng việc thực hiện lọc vùng (zonal filtering). Các bộ vùng đƣợc gọi là “mặt nạ đặc điểm” (feature mask) thƣờng là các khe hẹp với hình dạng khác nhau (chữ nhật, tam giác, cung tròn v.v ) Đặc điểm biên và đƣờng biên: Đặc trƣng cho đƣờng biên của đối tƣợng và do vậy rất hữu ích trong việc trích trọn các thuộc tính bất biến đƣợc dùng khi nhận dạng đối tƣợng. Các đặc điểm này có thể đƣợc trích chọn nhờ toán tử gradient, toán tử la bàn, toán tử Laplace, toán tử “chéo không” (zero crossing) v.v Việc trích chọn hiệu quả các đặc điểm giúp cho việc nhận dạng các đối tƣợng ảnh chính xác, với tốc độ tính toán cao và dung lƣợng nhớ lƣu trữ giảm xuống. 1.1.2.6 Nhận dạng Nhận dạng tự động (automatic recognition), mô tả đối tƣợng, phân loại và phân nhóm các mẫu là những vấn đề quan trọng trong thị giác máy, đƣợc ứng dụng trong nhiều ngành khoa học khác nhau. Tuy nhiên, một câu hỏi đặt ra là: mẫu (pattern) là gì? Watanabe, một trong những ngƣời đi đầu trong lĩnh vực này đã định nghĩa: “Ngƣợc lại với hỗn loạn (chaos), mẫu là một thực thể (entity), đƣợc xác định một cách ang áng (vaguely defined) và có thể gán cho nó một tên gọi nào đó”. Ví dụ mẫu có thể là ảnh của vân tay, ảnh của một vật nào đó đƣợc chụp, một chữ viết, khuôn mặt ngƣời hoặc một ký đồ tín hiệu tiếng nói. Khi biết một mẫu nào đó, để nhận dạng hoặc phân loại mẫu đó có thể: Hoặc phân loại có mẫu (supervised classification), chẳng hạn phân tích phân biệt (discriminant analyis), trong đó mẫu đầu vào đƣợc định danh nhƣ một thành phần của một lớp đã xác định.
  14. 14 Hoặc phân loại không có mẫu (unsupervised classification hay clustering) trong đó các mẫu đƣợc gán vào các lớp khác nhau dựa trên một tiêu chuẩn đồng dạng nào đó. Các lớp này cho đến thời điểm phân loại vẫn chƣa biết hay chƣa đƣợc định danh. Hệ thống nhận dạng tự động bao gồm ba khâu tƣơng ứng với ba giai đoạn chủ yếu sau đây: 1o. Thu nhận dữ liệu và tiền xử lý. 2o. Biểu diễn dữ liệu. 3o. Nhận dạng, ra quyết định. Bốn cách tiếp cận khác nhau trong lý thuyết nhận dạng là: 1o. Đối sánh mẫu dựa trên các đặc trƣng đƣợc trích chọn. 2o. Phân loại thống kê. 3o. Đối sánh cấu trúc. 4o. Phân loại dựa trên mạng nơ-ron nhân tạo. Trong các ứng dụng rõ ràng là không thể chỉ dùng có một cách tiếp cận đơn lẻ để phân loại “tối ƣu” do vậy cần sử dụng cùng một lúc nhiều phƣơng pháp và cách tiếp cận khác nhau. Do vậy, các phƣơng thức phân loại tổ hợp hay đƣợc sử dụng khi nhận dạng và nay đã có những kết quả có triển vọng dựa trên thiết kế các hệ thống lai (hybird system) bao gồm nhiều mô hình kết hợp. Việc giải quyết bài toán nhận dạng trong những ứng dụng mới, nảy sinh trong cuộc sống không chỉ tạo ra những thách thức về thuật giải, mà còn đặt ra những yêu cầu về tốc độ tính toán. Đặc điểm chung của tất cả những ứng dụng đó là những đặc điểm đặc trƣng cần thiết thƣờng là nhiều, không thể do chuyên gia đề xuất, mà phải đƣợc trích chọn dựa trên các thủ tục phân tích dữ liệu. 1.1.2.7 Nén ảnh Nhằm giảm thiểu không gian lƣu trữ. Thƣờng đƣợc tiến hành theo cả hai cách khuynh hƣớng là nén có bảo toàn và không bảo toàn thông tin. Nén không bảo toàn thì thƣờng có khả năng nén cao hơn nhƣng khả năng phục hồi thì kém hơn. Trên cơ sở hai khuynh hƣớng, có 4 cách tiếp cận cơ bản trong nén ảnh:
  15. 15 Nén ảnh thống kê: Kỹ thuật nén này dựa vào việc thống kê tần xuất xuất hiện của giá trị các điểm ảnh, trên cơ sở đó mà có chiến lƣợc mã hóa thích hợp. Một ví dụ điển hình cho phƣơng pháp này là *TIF Nén ảnh không gian: Kỹ thuật này dựa vào vị trí không gian của các điểm ảnh để tiến hành mã hóa. Kỹ thuật lợi dụng sự giống nhau của các điểm ảnh trong các vùng gần nhau. Ví dụ cho kỹ thuật này là mã nén *.PCX Nén ảnh sử dụng phép biến đổi: Đây là kỹ thuật tiếp cận theo hƣớng nén không bảo toàn và do vậy, kỹ thuật thƣờng nén hiệu quả hơn. *.JPG chính là tiếp cận theo kỹ thuật nén này. Nén ảnh Fractal: Sử dụng tính chất Fractal của các đối tƣợng ảnh, thể hiện sự lặp lại của các chi tiết. Kỹ thuật nén sẽ tính toán để chỉ cần lƣu trữ phần gốc ảnh và quy luật sinh ra ảnh theo nguyên lý Fractal.
  16. 16 1.2 ÁNH SÁNG VÀ HIỆU CHỈNH ÁNH SÁNG TRONG ẢNH 1.2.1 Ánh sáng và màu sắc trong ảnh số là gì? Nhƣ đã giới thiệu ở trên, hình ảnh đƣợc số hóa dƣới dạng ma trận điểm ảnh. Điểm ảnh đƣợc xem nhƣ là dấu hiệu hay cƣờng độ sáng tại 1 toạ độ trong không gian của đối tƣợng. Giá trị có thể có của mỗi điểm ảnh là mức xám, màu sắc của điểm ảnh đó. Và do đó Ánh sáng trong ảnh số cũng chính là màu sắc trong ảnh. 1.2.2 Một số hệ màu 1.2.2.1 Hệ màu RGB Mắt ngƣời có thể phân biệt hàng ngàn màu sắc khác nhau, những con số chính xác hơn vẫn còn đang đƣợc bàn cãi nhiều. Ba màu RGB (Red-Green- Blue) mã hóa hệ thống đồ họa sử dụng ba byte (28)3 hay khoảng chừng 16 triệu màu phân biệt. Máy tính có thể phân biệt bất kỳ màu gì sau khi đƣợc mã hóa, nhƣng việc mã hóa có thể không trình bày đƣợc những sự khác biệt trong thế giới thực. Mỗi điểm ảnh RGB bao gồm một byte cho màu R, một byte cho màu G và một byte cho màu B. Việc mã hóa một màu tùy ý trong dãy hiển thị đƣợc làm bằng cách tổ hợp ba màu chính. Ví dụ: Red(255,0,0), Green(0,255,0), Blue(0,0,255), Black(0,0,0) Hệ thống màu RGB là một hệ thống màu cộng vào bởi vì mỗi màu đƣợc tạo nên bằng cách cộng thêm các phần tử vào màu đen(0,0,0) Khuôn dạng của không gian màu RGB là định dạng phổ biến nhất của ảnh số, lý do chính là tính tƣơng thích với màn hình hiển thị chính là màn hình vi tính. Tuy nhiên không gian màu RGB có hạn chế lớn nhất là không phù hợp với cách con ngƣời cảm nhận về màu sắc. Do đó không phù hợp cho việc ứng dụng vào tìm kiếm ảnh. 1.2.2.2 Hệ màu CMY và CMYK Hệ thống màu CMY theo mô hình in trên giấy trắng và theo khuôn mẫu trừ từ màu trắng thay vì thêm vào từ màu đen nhƣ hệ thống màu RGB. CMY là viết tắt của Cyan-Magenta-Yellow (màu lục lam, màu đỏ tƣơi, màu vàng), đó là ba màu chính tƣơng ứng với ba màu mực in. Cyan hấp thu sự chiếu sáng của màu đỏ, Magenta hấp thu màu xanh lục, Yellow hấp thu màu xanh dƣơng. Do đó, tạo ra sự phản ánh tƣơng ứng nhƣ khi in ảnh đƣợc chiếu sáng với ánh sáng trắng. Hệ thống dƣới dạng âm tính vì mã hóa theo dạng hấp thụ màu. Có một số mã
  17. 17 hóa nhƣ sau: trắng (0,0,0) vì không có ánh sáng trắng đƣợc hấp thụ, đen (255,255,255) vì tất cả các thành phần của màu trắng đều đƣợc hấp thụ. Hệ thống màu CMY dƣờng nhƣ là một sự đảo ngƣợc của hệ thống màu RGB. Đặc tính của nó là sự đơn giản, ứng dụng nhiều trong thực tế. Tuy nhiên khuyết điểm của nó cũng tƣơng tự nhƣ không gian màu RGB, tức là cách mã hóa khác với cách mà con ngƣời cảm nhận về màu sắc. Máy in thƣờng dùng hệ màu CMYK, một “phiên bản mở rộng” của hệ màu CMY. Ba chữ đầu tiên C, M, Y thì các bạn vừa mới đƣợc giải thích ở trên. Vậy chữ K là màu gì? Câu trả lời là màu đen, tiếng Anh là Black (chúng ta dùng chữ K mà không dùng chữ B vì chữ B đã đƣợc dùng cho màu xanh, Blue, trong hệ RGB). Tại sao chúng ta lại cần màu đen? Chắc chắn nhiều ngƣời trong số các chúng ta sẽ thắc mắc là tại sao không trộn ba màu C, M, Y để ra màu đen. Câu trả lời khá đơn giản. Thứ nhất là nếu trộn ba màu này lại thì sẽ rất tốn mực máy in. (Chúng ta để ý máy in thƣờng đƣợc dùng để in văn bản trắng đen khá nhiều, nên nếu chúng ta dành riêng một lọ mực màu đen cho những việc nhƣ thế này thì hợp lý hơn). Thứ hai là giả sử chúng ta có thử trộn ba màu C, M, Y lại đi nữa thì màu đen mà chúng ta thu đƣợc trên thực tế không “đen” cho lắm, nó giống nhƣ màu xám đậm hơn. Vậy thì CMY và RGB liên hệ với nhau nhƣ thế nào. Nói một cách ngắn gọn, nếu võng mạc chúng ta tiếp nhận ánh sáng màu R và G cùng một lúc thi chúng ta sẽ thấy màu Y. Tƣơng tự, tiếp nhận R và B cùng lúc sẽ thấy màu M, và G kết hợp với B thì sẽ ra màu C. Hình 2.1 bên dƣới sẽ minh họa cho ý này: Hình 1.6. Sơ đồ liên hệ giữa không gian màu RGB và CMY 1.2.2.3 Hệ màu HSI Hệ thống màu HSI mã hóa thông tin màu sắc bằng cách chia giá trị intensity(I) từ hai giá trị đƣợc mã hóa thuộc về độ hội tụ của màu - hue(H) và saturation(S).
  18. 18 Thành phần không gian màu HSI gồm có ba phần: Hue đƣợc định nghĩa có giá trị 0-2Π , mang thông tin về màu sắc. Saturation có giá trị 0-1, mang giá trị về độ thuần khiết của thành phần Hue. Intensity (Value) mang thông tin về độ sáng của điểm ảnh.Ta có thể hình dung không gian màu HSI nhƣ là vật hình nón. Với trục chính biểu thị cƣờng độ sáng Intensity. Khoảng cách đến trục biểu thị độ tập chung Saturation. Góc xung quanh trục biểu thị cho sắc màu Hue. Hình 1.7. Mô hình màu HSI Đôi khi, hệ thống màu HSI đƣợc coi nhƣ là hệ thống màu HSV dùng Value thay vì Intensity, hay HSL(HLS) dùng Lightness thay Intensity, hay HSB dùng Brightness thay Intensity. Hệ thống màu HSI thì thích hợp hơn với một số thiết kế đồ họa bởi vì nó cung cấp sự điều khiển trực tiếp đến ánh sáng và hue. Hệ thống màu HSI cũng hỗ trợ tốt hơn cho những thuật toán xử lý ảnh vì sự tiêu chuẩn hóa về ánh sáng và tập chung vào hai tham số về độ hội tụ màu, và cƣờng độ màu.
  19. 19 Hình 1.8. Mô hình màu HSV Hình 1.9. So sánh giữa HSL và HSV Hệ thống màu HSI có sự phân chia rõ rệt giữa ánh sáng và màu sắc.
  20. 20 1.2.3 Hiệu chỉnh ánh sáng trong ảnh Hiệu chỉnh ánh sáng trong ảnh là một kỹ thuật máy tính nhằm xử lý ánh sáng trong ảnh nhằm đạt một mục đích nào đó của ngƣời dùng. Ánh sáng có thể đƣợc làm tăng, giảm hoặc loại bỏ tác động của nó lên bức ảnh. Hiệu chỉnh ánh sáng trong ảnh là một bƣớc quan trọng trong hệ thống xử lý ảnh. Thực hiện hiệu chỉnh ánh sáng tốt có thể tạo ra những lợi thế rất lớn cho các công việc xử lý ảnh khác sau này. Ảnh chụp cùng một cảnh có thể thay đổi rất nhiều bởi điều kiện ánh sáng và góc chụp của camera. Chẳng hạn nhƣ chụp thẳng, chụp nghiêng, chụp ngƣợc sáng Với điều kiện ánh sáng khác nhau, một số chi tiết trong ảnh sẽ bị biến đổi màu sắc hoặc thậm chí bị mờ. Nguồn sáng làm thay đổi màu sắc: ánh sáng chiếu vào một vật thể làm mắt ngƣời nhận thấy một phần vật thể hoặc toàn vật thể có màu sắc khác. Ví dụ nhƣ ảnh chiếc rèm cửa ở dƣới, vùng đƣợc ánh sáng chiếu vào có màu khác với các vùng không đƣợc chiếu, hoặc chiếu ít. Hình 1.10. Ánh sáng làm thay đổi màu sắc vật thể Ánh sáng quá chói hoặc quá tối: ảnh chụp dƣới điều kiện ánh sáng quá sáng hoặc quá tối có thể gây ra ảnh bị mờ, nhiễu, mất chi tiết.
  21. 21 Hình 1.11. Ảnh chụp trong điều kiện ánh sáng tối
  22. 22 CHƢƠNG 2: MỘT SỐ PHƢƠNG PHÁP HIỆU CHỈNH MÀU SẮC VÀ ÁNH SÁNG TRONG ẢNH 2.1 Hiệu chỉnh ánh sáng Nhƣ chúng ta đã biết giá trị tại mỗi điểm ảnh thể hiện cƣờng độ sáng tại điểm đó. Do đó, phƣơng pháp đơn giản nhất để hiệu chỉnh ánh sáng trong ảnh là thay đổi giá trị điểm ảnh của ảnh. Ý tƣởng của phƣơng pháp này là thay đổi một cách đồng đều giá trị tại mỗi điểm ảnh. Phƣơng pháp này đƣợc thực hiện bằng cách cộng giá trị mỗi điểm ảnh với một số nguyên nằm trong khoảng [-255, 255]. Giả sử ta có ảnh I với kích thƣớc m × n và một số nguyên c. Khi đó thuật toán đƣợc mô tả nhƣ sau: for (i = 0; i 0: ảnh sáng lên. • Nếu c < 0: ảnh tối đi. Với ảnh màu ta áp dụng thuật toán trên cho từng kênh màu. 2.2 Hiệu chỉnh độ tƣơng phản Ý tƣởng của thuật toán này là tạo sự thay đổi một cách rõ ràng giữa các điểm ảnh để sau khi thực hiện ta thu đƣợc một ảnh với các đối tƣợng đƣợc phân biệt rõ ràng hơn. Phƣơng pháp này đƣợc thực hiện bằng cách nhân giá trị mỗi điểm ảnh với một số nguyên dƣơng Giả sử ta có ảnh I với kích thƣớc m × n và một số nguyên c. Khi đó thuật toán đƣợc mô tả nhƣ sau: for (i = 0; i < m; i + +) for (j = 0; j < n; j + +) I [i, j] = I [i, j] × c;
  23. 23 • Nếu c > 1: tăng độ tƣơng phản. • Nếu c < 1: giảm độ tƣơng phản. Với ảnh màu ta áp dụng thuật toán trên cho từng kênh màu. 2.3 Hiệu chỉnh gamma Bản chất của việc hiển thị máy tính là việc đƣa hình ảnh dạng dữ liệu ra màn hình (output). Tuy nhiên trong quá trình hiển thị trên màn hình, thiết bị đầu cuối thƣờng gặp 1 vấn đề là độ nhạy sáng (Light Intensity). Hầu nhƣ các loại màn hình đều có đặc điểm chung là khi xuất kết quả đều cho ra giá trị là một hàm mũ. Tức là với x là giá trị đầu vào thì khi xuất ra màn hình sẽ là lũy thừa của x. Điều này này làm giảm chất lƣợng hình ảnh và hình ảnh thƣờng tối hơn bình thƣờng. Hình 2.1. Giá trị đầu vào màn hình Hình 2.2. Giá trị xuất ra màn hình Lý do bức ảnh tối hơn là vì mức điện áp của màn hình nằm trong khoảng 0 đến 1. Do đó khi thực hiện hàm mũ sẽ thu đƣợc giá trị nhỏ hơn giá trị đầu vào. Ví
  24. 24 dụ giá trị đầu vào là 0.5 khi thực hiện hàm mũ 2.5 sẽ thu đƣợc kết quả là 0.177 nhỏ hơn giá trị đầu vào là 0.5 Do đó, để hình ảnh có độ hiển thị trung thực, anh đầu vào sẽ đƣợc làm lũy thừa với một số mũ gọi là gamma. Giả sử màn hình đƣa ra kết quả là lũy thừa với số mũ là 2.5 thì ảnh đầu vào khi thực hiện “hiệu chỉnh gamma” sẽ đƣợc làm lũy thừa với số mũ γ = 1/2.5. Hình 2.3. Quá trình hiệu chỉnh gamma 2.3.1 Thuật toán Trong thuật toán trên, giá trị đầu vào của ảnh nằm trong khoảng [0, 1]. Vậy để áp dụng cho ảnh [0,255] ta áp dụng công thức 2.1: Color’ = Round(255*Pow(Color/255,gamma)+0.5) (2.1) Ở đây Round là hàm làm tròn, Pow là hàm lũy thừa. Cho ảnh I có kích thƣớc m × n. Thuật toán đƣợc mô tả nhƣ sau: for (i = 0; i 1: Ảnh tối đi 2.3.2 Cải tiến thuật toán Với thuật toán trên, mỗi lần duyệt 1 điểm ảnh thì hàm lũy thừa và hàm làm tròn lại đƣợc thực hiện 1 lần nhƣ vậy sẽ làm chậm quá trình thực hiện. Để giải quyết
  25. 25 vấn đề này, ta sẽ tạo 1 mảng lƣu sẵn giá trị tính toán cho Color trong khoảng [0,255]. Sau đó áp dụng cho từng điểm ảnh. for(i=0;i<256;i++) Color[i] = Round(255*Pow(i/255,gamma)+0.5); for (i = 0; i < m; i + +) for (j = 0; j < n; j + +) I [i, j] = Color[I[i, j]]; Đối với ảnh màu ta áp dùng thuật toán với từng kênh màu. 2.3.3 Một số kết quả ví dụ Hình 2.4. Ví dụ về hiệu chỉnh gamma 2.4 Cân bằng màu Thuật toán cân bằng màu nhằm mục đích để sửa chữa hình ảnh thiếu sáng, hoặc hình ảnh chụp trong ánh sáng nhân tạo hoặc ánh sáng tự nhiên đặc biệt, nhƣ hoàng hôn. Có nhiều thuật toán phức tạp trong việc cân bằng màu sắc hoặc điều chỉnh màu tƣơng phản. Việc thực hiện các thuật toán hiệu chỉnh màu nhiều có thể đƣợc đánh giá bằng cách so sánh kết quả của chúng với thuật toán cân bằng màu sắc đơn giản nhất đề xuất ở đây. Các giả định cơ bản thuật toán này là các giá trị cao nhất của R, G, B quan sát thấy trong hình ảnh phải tƣơng ứng với màu trắng, và các giá trị thấp nhất tƣơng ứng với màu tối. Nếu bức ảnh đƣợc chụp trong bóng tối, các giá
  26. 26 trị cao nhất có thể đƣợc nhỏ hơn đáng kể so với 255. Bằng cách kéo dài các vảy màu sắc, hình ảnh trở nên sáng sủa hơn. Nếu có một màu ánh sáng xung quanh, ví dụ cho ánh sáng điện trong đó R và G chiếm ƣu thế, cân bằng màu sắc sẽ tăng cƣờng các kênh B. Do đó, ánh sáng xung quanh sẽ mất màu vàng của nó. Mặc dù nó không nhất thiết phải cải thiện hình ảnh, cân bằng màu sắc đơn giản luôn luôn làm tăng khả năng đọc của nó. Thuật toán đơn giản là giãn đến mức có thể, các giá trị của ba kênh Red, Green, Blue (R, G, B), để chúng chiếm phạm vi tối đa có thể [0, 255]. Cách đơn giản để làm nhƣ vậy là để áp dụng một biến đổi affine ax + b cho mỗi kênh, tính toán a và b để các giá trị tối đa trong kênh trở thành 255 và giá trị tối thiểu trở thành 0. Tuy nhiên, nhiều hình ảnh có chứa một vài điểm ảnh sai mà đã chiếm các giá trị 0 và 255. Nhƣ vậy, một hình ảnh đẹp thƣờng cải thiện màu sắc thu đƣợc bằng cách "cắt" một phần nhỏ của các điểm ảnh với các giá trị cao nhất tới 255 và tỷ lệ phần nhỏ của các điểm ảnh với các giá trị thấp nhất là 0, trƣớc khi áp dụng biến đổi affine. Chú ý rằng độ bão hòa này có thể tạo ra các vùng màu đen hoặc các vùng màu trắng, có thể trông không tự nhiên. Nhƣ vậy, tỷ lệ điểm ảnh bão hòa phải đƣợc càng nhỏ càng tốt. 2.4.1 Thực hiện Hình ảnh đầu vào là một mảng của N giá trị số trong khoảng [min, max]. Đầu ra là một mảng điều chỉnh của N giá trị đã đƣợc thay đổi. Nhiều kênh hình ảnh đƣợc xử lý độc lập trên mỗi kênh với cùng một phƣơng pháp. Chúng ta sẽ thực hiện một sự cân bằng màu sắc trên dữ liệu này mà chúng ta đã bão hòa s1(%) điểm ảnh ở phía bên trái của biểu đồ, và s2(%) của điểm ảnh ở phía bên phải, sự cân bằng này sẽ bão hòa nhiều nhất là N × s1/100 điểm ảnh ở đầu và N × s2/100 ở phần cuối của biểu đồ. Chúng ta không thể đảm bảo chính xác để làm bão hòa N × (s1 + s2) / 100 điểm ảnh bởi vì sự phân bố của các giá trị của điểm ảnh là rời rạc. 2.4.2 Phƣơng pháp phân loại Gọi V min và V max là các cực trị bão hòa, có thể đƣợc xem nhƣ là lƣợng phân phối giá trị của điểm ảnh, ví dụ nhƣ 1cm và 99cm(trong 100cm) cho độ bão hòa 2%.
  27. 27 Nhƣ vậy, một cách dễ dàng để tính toán V min và V max là để sắp xếp các giá trị điểm ảnh, và chọn cực trị bão hòa từ mảng đƣợc sắp xếp. Thuật toán này sẽ đƣợc mô tả nhƣ sau: 1. Sắp xếp các giá trị pixel: Các giá trị ban đầu phải đƣợc giữ để chuyển đổi hơn với các hàm affine bị chặn, vậy nên trƣớc hết N điểm ảnh phải đƣợc sao chép trƣớc khi phân loại. 2. Chọn cực trị bão hòa từ các điểm ảnh đƣợc sắp xếp với một mức độ bão hòa s = s1 + s2 trong [0, 100 ], chúng ta muốn để làm bão hòa N × s/100 điểm ảnh, vì vậy V min và V max đƣợc lấy từ mảng đƣợc sắp xếp tại các vị trí N × s1 / 100 và N × (1 - s2 / 100) - 1. 3. Bão hòa các điểm ảnh: theo các định nghĩa trƣớc của V min và V max , số lƣợng điểm ảnh có giá trị thấp hơn so với V min hoặc cao hơn so với V max là nhiều nhất là N × s/100. Các điểm ảnh (trong mảng phân loại ban đầu) đƣợc cập nhật cho V min (V max) nếu giá trị của chúng thấp hơn V min (cao hơn so với V max). 4. Biến đổi affine hình ảnh đƣợc thu nhỏ [min, max] với một sự biến đổi của các giá trị điểm ảnh của hàm: f (x) = (x - Vmin) × (max - min) / (V max - V min) + min. (2.2) 2.4.3 Phƣơng pháp biểu đồ(Histogram) Sắp xếp các giá trị N điểm ảnh đòi hỏi O (N log (N)) hoạt động và một bản sao tạm thời của các N điểm ảnh. Một thực hiện hiệu quả hơn là đạt đƣợc bởi một biến thể dựa trên biểu đồ, nhanh hơn (độ phức tạp O (N)) và đòi hỏi ít bộ nhớ (O (max - min) so với O (N)). 1. Xây dựng một biểu đồ tích lũy của các giá trị pixel Các mảng biểu đồ tích lũy có nhãn i chứa số lƣợng điểm ảnh có giá trị thấp hơn hoặc bằng với i. 2. Chọn cực trị bão hòa từ biểu đồ V min là nhãn biểu đồ thấp nhất có giá trị cao hơn so với N × s1 / 100, và số lƣợng điểm ảnh có giá trị thấp hơn so với V min nhiều nhất là N × s1 / 100. Nếu s1 = 0 sau đó V min là nhãn biểu đồ thấp nhất, tức là giá trị tối thiểu pixel của hình ảnh đầu vào. V max là nhãn ngay sau nhãn biểu đồ cao nhất với giá trị thấp hơn hoặc bằng N × (1 - S2 / 100 ), và số lƣợng điểm ảnh có giá trị cao hơn so với V max nhiều nhất là N × s2 / 100. Nếu s2 = 0 thì V max là nhãn biểu đồ cao nhất, tức là tối đa giá trị pixel của hình ảnh đầu vào.
  28. 28 3. Bão hòa các điểm ảnh 4. Biến đổi affine tƣơng tự nhƣ cho phƣơng pháp phân loại. 2.4.4 Mã giả Các bƣớc sau đây trình bày cho hình ảnh với các giá trị pixel trong không gian số nguyên 8 bit (min = 0, max = 255) với chỉ một kênh màu. Xem các nhận xét sau đây cho độ chính xác cao hơn hình ảnh. Sau đây là việc thực hiện cơ bản, cải tiến có sẵn trong mã nguồn đƣợc đề xuất. image[i] là các giá trị pixel, N là số lƣợng điểm ảnh, histo là một mảng của 256 số nguyên unsigned, với một kiểu dữ liệu đủ lớn để lƣu trữ N , ban đầu chứa giá trị 0. Các chỉ số mảng bắt đầu từ 0. // Xây dỰng histogram tích lũy for i from 0 to N-1 histo[image[i]] = histo[image[i]] + 1 for i from 1 to 255 histo[i] = histo[i] + histo[i - 1] // Tìm Vmin và Vmax vmin := 0 while histo[vmin + 1] N * (1 - s2 / 100) vmax = vmax - 1 if vmax vmax
  29. 29 image[i] = vmax // Tính lại điểm ảnh for i from 0 to N-1 image[i] = (image[i] - vmin) * 255 / (vmax - vmin) 2.4.5 Độ chính xác cao hơn Đối với ảnh 16 bit, phƣơng pháp mảng biểu đồ có thể đƣợc sử dụng, và nhu cầu mảng 65,536 (256 Mb trên một hệ thống 32 bit, 512 Mb trên một hệ thống 64 bit, đƣợc so sánh với 128 Mb sử dụng cho một hình ảnh 256 × 256 ). Nhƣng việc xác định vmin và vmax . Đối với 32 bit giá trị số nguyên pixel, kích thƣớc biểu đồ (4.294.967.296) trở thành một vấn đề và không thể đƣợc xử lý đúng trong bộ nhớ. Chúng tôi có thể chuyển sang một quá trình gồm nhiều bƣớc: Xây dựng một biểu đồ với mảng chứa nhiều hơn một giá trị điểm ảnh duy nhất, nhƣ vậy mà kích thƣớc biểu đồ là có hạn (ví dụ mảng 256 giá trị, mỗi một khoảng giá trị pixel); Tìm kiếm các mảng chứa vmin và vmax . Khởi động lại việc xây dựng biểu đồ và tìm kiếm trên một phân khu của những mảng. Nếu một độ chính xác chính xác là không cần thiết, những cải tiến mới nhất có thể đƣợc bỏ qua. Đối với dữ liệu dấu chấm động, giá trị điểm ảnh có thể không đƣợc sử dụng nhƣ một chỉ số mảng, mảng kết hợp và biểu đồ (chỉ dành cho hình ảnh ít) hoặc nhiều bƣớc biểu đồ đã đƣợc sử dụng, ví dụ nhƣ làm tròn các giá trị dấu chấm động nhƣ một bƣớc đầu tiên. Lƣu ý rằng các đề xuất mã giả cũng có thể đƣợc sử dụng cho hình ảnh với các giá trị điểm ảnh số nguyên (nhƣ sản xuất bởi các thiết bị chụp chung hình ảnh và tìm thấy trong các định dạng hình ảnh thông thƣờng) đƣợc lƣu trữ là điểm nổi dữ liệu (thƣờng mong muốn cho chế biến hình ảnh), bằng cách chuyển đổi các điểm ảnh giá trị image[i] để tƣơng đƣơng với số nguyên của nó trong khi làm đầy các biểu đồ.
  30. 30 2.4.6 Các trƣờng hợp đặc biệt Nếu hình ảnh là không đổi (tất cả các điểm ảnh có cùng giá trị v), khi đó, theo mô tả việc thực hiện và mã giả, các biểu đồ giá trị là 0 cho các nhãn thấp hơn so với v, và N cho các nhãn cao hơn hoặc bằng v, và sau đó đối với bất kỳ giá trị của s1 và s2, V min = v, Vmax = v. Điều này (V min = V max) cũng có thể xảy ra cho hình ảnh không tƣơng phản, thông thƣờng cho ra hình ảnh với ít hơn N × s1 / 100 điểm ảnh với các giá trị nhỏ hơn hoặc với nhiều hơn N × s2 / 100 lớn hơn giá trị trung bình v. Trƣờng hợp đó phải đƣợc xử lý bằng cách thiết lập tất cả các điểm ảnh về giá trị v. 2.4.7 Ảnh màu Trong trƣờng hợp hình ảnh màu RGB chúng ta có thể áp dụng các thuật toán độc lập trên mỗi kênh, hoặc áp dụng nó cho cƣờng độ mức xám (I) của hình ảnh và sửa đổi các kênh màu tƣơng ứng, chẳng hạn là tỷ lệ R / G / B ban đầu là không đổi. Trong trƣờng hợp sau, có thể là áp đặt một tỷ lệ tối đa của các điểm ảnh bão hòa s1(%) đến s2(%) trái và bên phải của biểu đồ màu xám mức độ có thể cho ra một tỷ lệ phần trăm bão hòa cao hơn các điểm ảnh trên một số các kênh màu. Để đảm bảo rằng không có nhiều hơn s1(%) điểm ảnh sẽ đƣợc bão hòa min, cũng không có nhiều s2(%) điểm ảnh sẽ đƣợc bão hòa max trong không ai trong số các kênh, các thuật toán lặp đi lặp lại sau đây đƣợc đề xuất (chúng ta xem xét trƣờng hợp của hình ảnh màu 8-bit ): 1. Xây dựng các biểu đồ tích lũy của R, G, B và I. 2. Thiết lập Vmax = max và tìm Vmin , mức thấp nhất của nhãn biểu đồ xám (I) có giá trị cao hơn so với N × s1 / 100. 3. Tính toán các giá trị mức xám mới (Iout): bão hòa các giá trị nhỏ hơn V min hoặc lớn hơn Vmax và áp dụng một biến đổi affine với phần còn lại của giá trị: I out = (I - Vmin) × (max - min) / (V max - V min) + min. 4. Tính toán giá trị mới của các kênh màu: R out = (I out / I) × R, G out = (I out / I) × G, B out = (I out / I) × B 5. Nếu, một số các kênh màu mới, tỷ lệ điểm ảnh bão hòa min là lớn hơn s1(%), giảm Vmin (V min = V min - 1) và trở về bƣớc 3.
  31. 31 6. Giữ giá trị của V min tìm thấy trong bƣớc trƣớc và tìm V max, nhãn ngay sau mức cao nhất của nhãn biểu đồ xám (I) với giá trị thấp hơn hoặc bằng N × (1 - s2 / 100). 7. Tính toán giá trị cấp độ mới màu xám (I out): tƣơng tự nhƣ bƣớc 3. 8. Tính toán giá trị mới của các kênh màu: tƣơng tự nhƣ bƣớc 4. 9. Nếu, một số các kênh màu mới, tỷ lệ điểm ảnh bão hòa để max là lớn hơn s2(%), tăng V max (V max = V max +1) và quay trở lại bƣớc 7.
  32. 32 CHƢƠNG 3: CHƢƠNG TRÌNH THỬ NGHIỆM 3.1 Giới thiệu chƣơng trình Chƣơng trình “hiệu chỉnh ánh sáng trong ảnh” sử dụng các thuật toán nhằm minh họa cho các thuật toán đƣợc trình bày trong đồ án. Chƣơng trình đƣợc cài đặt bằng ngôn ngữ VB.NET và chạy trên môi trƣờng Windows. Hình 3.1. Giao diện chính của chương trình. Chƣơng trình bao gồm 1 cửa sổ chính và các cửa sổ con hiển thị ảnh. Cửa sổ chính có chứa menu và thanh công cụ. Cửa sổ con hiển thị hình ảnh đƣợc mở hoặc ảnh sau khi đã sử lý. Bên cạnh đó còn một số cửa sổ phụ phục vụ cho việc nhập các tham số cho các thuật toán. 3.2 Các chức năng của chƣơng trình Nhóm chức năng “Tệp tin”: o Chức năng “Mở”: Mở file để xử lý. o Chức năng “Đóng”: Đóng file hiện hành. o Chức năng “Thoát”: Thoát khỏi chƣơng trình.
  33. 33 o Chức năng “Lƣu”: Lƣu file. Nhóm chức năng “Xử lý ảnh”: o Chức năng “Hiệu chỉnh ánh sáng”: Áp dụng thuật toán “Hiệu chỉnh ánh sáng” cho ảnh. o Chức năng “Hiệu chỉnh độ tƣơng phản”: Áp dụng thuật toán “Hiệu chỉnh độ tƣơng phản” để hiệu chỉnh ảnh. o Chức năng “Hiệu chỉnh gamma”: Áp dụng thuật toán “Hiệu chỉnh gamma” để hiệu chỉnh ảnh. o Chức năng “Cân bằng màu”: Áp dụng thuật toán “Cân bằng màu” để hiệu chỉnh ảnh. Nhóm chức năng “Cửa sổ”: Sắp xếp các cửa sổ hiển thị ảnh và chuyển đổi giữa các cửa sổ. Chức năng “Trợ giúp”: Thông tin về chƣơng trình. 3.3 Ví dụ về nhóm chức năng “Xử lý ảnh” 3.3.1 Chức năng “Hiệu chỉnh ánh sáng” Hình 3.2. Ví dụ về chứ năng “Hiệu chỉnh ánh sáng” với tham số là 76
  34. 34 3.3.2 Chức năng “Hiệu chỉnh độ tƣơng phản” Hình 3.3. Ví dụ chức năng “Hiệu chỉnh độ tương phản” với tham số là 2.2 3.3.3 Chức năng “Hiệu chỉnh gamma” Hình 3.4. Nhập tham số cho chức năng
  35. 35 Hình 3.5. Và thu được ảnh kết quả 3.3.4 Chức năng “Cân bằng màu” Hình 3.6. Nhập tham số đầu vào
  36. 36 Hình 3.7. Và kết quả thu được.
  37. 37 KẾT LUẬN Ngày nay, hình ảnh có thể coi là một phƣơng tiện truyền thông hết sức hiệu quả vì hình ảnh là ngôn ngữ hết sức trực quan và sinh động giúp việc truyền tải thông tin dễ dàng hơn, hiệu quả hơn. Nhƣng để có đƣợc sự hiệu quả đó thì hình ảnh phải có bố cục và màu sắc phù hợp để có thể thỏa mãn đƣợc ngƣời xem. Do đó vấn đề xử lý ảnh nói chung, hiệu chỉnh màu sắc và ánh sáng của ảnh nói riêng là hết sức có ý nghĩa. Hiệu chỉnh màu sắc và ánh sáng của ảnh là một phần trong chuỗi xử lý ảnh. Nó không những đem lại các kết quả phù hợp với yêu cầu của ngƣời dùng mà còn là bƣớc tiền xử lý cho các quá trình xử lý sau của quá trình xử lý ảnh. Trong đồ án tốt nghiệp này em đã tìm hiểu đƣợc một số vấn đề sau: Khái quát về xử lý ảnh. Một số vấn đề trong xử lý ánh sáng. Một số kĩ thuật hiệu chỉnh ánh sáng. Cài đặt đƣợc chƣơng trình sử dụng các thuật đã nêu trong phần nội dung đồ án Do hạn chế về mặt thời gian nên đồ án chỉ tìm hiểu đƣợc một số ít phƣơng pháp hiệu chỉnh ánh sáng và màu sắc. Do đó hƣớng phát triển đề tài là còn rất lớn.
  38. 38 TÀI LIỆU THAM KHẢO Tài liệu Tiếng Việt [1]. Đỗ Năng Toàn, Phạm Việt Bình , Giáo trình xử lý ảnh. Tài liệu Tiếng Anh [2]. Ana Belén Petro, Licolas Limare, Jean-Michel Morel , Catalina Sbert, Simplest Color Balance. [3]. Computer Graphics Systems Development Corporaton, CGSD – Gamma Correction Home Page. [4]. Lawrence(2003), Gamma Correction in Computer Graphic.
  39. 39 PHỤ LỤC Ảnh thu đƣợc sau quá trình số hoá có nhiều loại khác nhau, phụ thuộc vào kỹ thuật số hoá ảnh. Ảnh đƣợc chia thành 2 loại: ảnh đen trắng và ảnh màu. Ảnh thu đƣợc có thể lƣu trữ trên tệp để phục vụ cho các bƣớc xử lý tiếp theo. Dƣới đây sẽ trình bày một số định dạng ảnh thông dụng hay dùng trong quá trình xử lý ảnh hiện nay. 1. Định dạng ảnh IMG Ảnh IMG là ảnh đen trắng, phần đầu của ảnh IMG có 16 byte chứa các thông tin cần thiết sau: + 6 byte đầu: dùng để đánh dấu định dạng ảnh IMG. Giá trị của 6 byte này viết dƣới dạng Hexa: 0x0001 0x0008 0x0001. + 2 byte tiếp theo: chứa độ dài mẫu tin. Đó là độ dài của dãy các byte kề liền nhau mà dãy này sẽ đƣợc lặp lại một số lần nào đó. Số lần lặp này sẽ đƣợc lƣu trong byte đếm. Nhiều dãy giống nhau đƣợc lƣu trong một byte. + 4 byte tiếp: mô tả kích cỡ pixel. + 2 byte tiếp: số pixel trên một dòng ảnh. + 2 byte cuối: số dòng ảnh trong ảnh. Ảnh IMG đƣợc nén theo từng dòng. Mỗi dòng bao gồm các gói (pack). Các dòng giống nhau cũng đƣợc nén thành một gói. Có 4 loại gói sau: Loại 1: Gói các dòng giống nhau. Quy cách gói tin này nhƣ sau: 0x00 0x00 0xFF Count. Ba byte đầu tiên cho biết số các dãy giống nhau, byte cuối cho biết số các dòng giống nhau. Loại 2: Gói các dãy giống nhau. Quy cách gói tin này nhƣ sau: 0x00 Count. Byte thứ hai cho biết số các dãy giống nhau đƣợc nén trong gói. Độ dài của dãy ghi ở đầu tệp. Loại 3: Dãy các Pixel không giống nhau, không lặp lại và không nén được. Quy cách gói tin này nhƣ sau: 0x80 Count. Byte thứ hai cho biết độ dài dãy các pixel không giống nhau không nén đƣợc. Loại 4: Dãy các Pixel giống nhau.
  40. 40 Tuỳ theo các bít cao của byte đầu tiên đƣợc bật hay tắt. Nếu bít cao đƣợc bật (giá trị 1) thì đây là gói nén các byte chỉ gồm bít 0, số các byte đƣợc nén đƣợc tính bởi 7 bít thấp còn lại. Nếu bít cao tắt (giá trị 0) thì đây là gói nén các byte gồm toàn bít 1. Số các byte đƣợc nén đƣợc tính bởi 7 bít thấp còn lại. Các gói tin của file IMG phong phú nhƣ vậy là do ảnh IMG là ảnh đen trắng, do vậy chỉ cần 1 bít cho 1 pixel thay vì 4 hoặc 8 nhƣ đã nói ở trên. Toàn bộ ảnh chỉ có những điểm sáng và tối tƣơng ứng với giá trị 1 hoặc giá trị 0. Tỷ lệ nén của kiểu định dạng này là khá cao. 2. Định dạng ảnh PCX Định dạng ảnh PCX là một trong những định dạng ảnh cổ điển nhất. Nó sử dụng phƣơng pháp mã hoá loạt dài RLE (Run – Length – Encoded) để nén dữ liệu ảnh. Quá trình nén và giải nén đƣợc thực hiện trên từng dòng ảnh. Thực tế, phƣơng pháp giải nén PCX kém hiệu quả hơn so với kiểu IMG. Tệp PCX gồm 3 phần: đầu tệp (header), dữ liệu ảnh (image data) và bảng màu mở rộng. Header của tệp PCX có kích thƣớc cố định gồm 128 byte và đƣợc phân bố nhƣ sau: + 1 byte: chỉ ra kiểu định dạng. Nếu là kiểu PCX/PCC thì nó luôn có giá trị là 0Ah. + 1 byte: chỉ ra version sử dụng để nén ảnh, có thể có các giá trị sau: - 0: version 2.5. - 2: version 2.8 với bảng màu. - 3: version 2.8 hay 3.0 không có bảng màu. - 5: version 3.0 có bảng màu. + 1 byte: chỉ ra phƣơng pháp mã hoá. Nếu là 0 thì mã hoá theo phƣơng pháp BYTE PACKED, ngƣợc lại là phƣơng pháp RLE. + 1 byte: số bít cho một điểm ảnh plane. + 1 word: toạ độ góc trái trên của ảnh. Với kiểu PCX nó có giá trị là (0,0), còn PCC thì khác (0,0). + 1 word: toạ độ góc phải dƣới. + 1 word: kích thƣớc bề rộng và bề cao của ảnh. + 1 word: số điểm ảnh. + 1 word: độ phân giải màn hình. + 1 word.
  41. 41 + 48 byte: chia nó thành 16 nhóm, mỗi nhóm 3 byte. Mỗi nhóm này chứa thông tin về một thanh ghi màu. Nhƣ vậy ta có 16 thanh ghi màu. + 1 byte: không dùng đến và luôn đặt là 0. + 1 byte: số bit plane mà ảnh sử dụng. Với ảnh 16 màu, giá trị này là 4, với ảnh 256 màu (1pixel/8bit) thì số bit plane lại là 1. + 1 byte: số bytes cho một dòng quét ảnh. + 1 word: kiểu bảng màu. + 58 byte: không dùng. Tóm lại, định dạng ảnh PCX thƣờng đƣợc dùng để lƣu trữ ảnh vì thao tác đơn giản, cho phép nén và giải nén nhanh. Tuy nhiên, vì cấu trúc của nó cố định, nên trong một số trƣờng hợp nó làm tăng kích thƣớc lƣu trữ. Và cũng vì nhƣợc điểm này mà một số ứng dụng lại sử dụng một kiểu định dạng khác mềm dẻo hơn: định dạng TIFF (Targed Image File Format) sẽ mô tả dƣới đây. 3. Định dạng ảnh TIFF Kiểu định dạng TIFF đƣợc thiết kế để làm nhẹ bớt các vấn đề liên quan đến việc mở rộng tệp ảnh cố định. Về cấu trúc, nó cũng gồm 3 phần chính: Phần Header (IFH) Có trong tất cả các tệp TIFF và gồm 8 byte: + 1 word: chỉ ra kiểu tạo tệp trên máy tính PC hay máy Macintosh. Hai loại này khác nhau rất lớn ở thứ tự các byte lƣu trữ trong các số dài 2 hay 4 byte. Nếu trƣờng này có giá trị là 4D4Dh thì đó là ảnh cho máy Macintosh. Nếu trƣờng này có giá trị là 4949h thì đó là ảnh của máy PC. + 1 word: version. Từ này luôn có giá trị là 42. Có thể coi đó là đặc trƣng của file TIFF vì nó không thay đổi. + 2 word: giá trị Offset theo byte tính từ đầu file tới cấu trúc IFD (Image File Directory) là cấu trúc thứ hai của file. Thứ tự các byte ở đây phụ thuộc vào dấu hiệu trƣờng đầu tiên. Phần thứ 2 (IFD)
  42. 42 Nó không ở ngay sau cấu trúc IFH mà vị trí của nó đƣợc xác định bởi trƣờng Offset trong đầu tệp. có thể có một hay nhiều IFD cùng tồn tại trong file (nếu file có nhiều hơn 1 ảnh). Một IFD bao gồm: + 2 byte: chứa các DE ( Directory Entry). + 12 byte là các DE xếp liên tiếp. Mỗi DE chiếm 12 byte. + 4 byte: chứa Offset trỏ tới IFD tiếp theo. Nếu đây là IFD cuối cùng thì trƣờng này có giá trị 0. Phần thứ 3 Các DE. Các DE có độ dài cố định gồm 12 byte và chia làm 4 phần: + 2 byte: chỉ ra dấu hiệu mà tệp ảnh đã đƣợc xây dựng. + 2 byte: kiểu dữ liệu của tham số ảnh. Có 5 kiểu tham số cơ bản: - 1: BYTE (1 byte) - 2: ASCII (1 byte) - 3: SHORT (2 byte). - 4: LONG (4 byte) - 5: RATIONAL (8 byte) + 4 byte: trƣờng độ dài (bộ đếm) chứa số lƣợng chỉ mục của kiểu dữ liệu đã chỉ ra. Nó không phải là tổng số byte cần thiết để lƣu trữ. Để có số liệu này ta cần nhân số chỉ mục với kiểu dữ liệu đã dùng. + 4 byte: đó là Offset tới điểm bắt đầu dữ liệu thực liên quan tới dấu hiệu, tức là dữ liệu liên quan với DE không phải lƣu trữ vật lý cùng với nó nằm ở một ví trí nào đó trong file. Dữ liệu chứa trong tệp thƣờng đƣợc tổ chức thành các nhóm dòng (cột) quét của dữ liệu ảnh. Cách tổ chức này làm giảm bộ nhớ cần thiết cho việc đọc tệp. Việc giải nén đƣợc thực hiện theo bốn kiểu khác nhau đƣợc lƣu trữ trong byte dấu hiệu nén. File ảnh TIFF dùng để giải quyết vấn đề khó mở rộng của file PCX. Tuy nhiên, với cùng một ảnh thì việc dùng file PCX chiếm ít không gian nhớ hơn.