Đồ án Thiết kế cung cấp điện cho công ty thép Việt-Hàn

pdf 96 trang huongle 1950
Bạn đang xem 20 trang mẫu của tài liệu "Đồ án Thiết kế cung cấp điện cho công ty thép Việt-Hàn", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfdo_an_thiet_ke_cung_cap_dien_cho_cong_ty_thep_viet_han.pdf

Nội dung text: Đồ án Thiết kế cung cấp điện cho công ty thép Việt-Hàn

  1. LỜI MỞ ĐẦU Điện năng là một dạng năng lượng đặc biệt có thể chuyển hóa thành các dạng năng lượng khác nhau như : nhiệt năng, cơ năng, hóa năng. Mặt khác điện năng có thể dễ dàng truyền tải, phân phối đi xa. Điện năng có mặt trong tất cả các lĩnh vực như kinh tế, khoa học – kĩ thuật và đời sống sinh hoạt của con người. Trong công cuộc công nghiệp hóa – hiện đại hóa đất nước điện năng lại càng quan trọng. Khi xây dựng bất kì một nhà máy, khu đô thị, một thành phố việc đầu tiên người thiết kế phải tính đến việc xây dựng một hệ thống điện để phục vụ sinh hoạt, sản xuất. Hiện nay, các ngành công nghiệp đều phát triển vượt bậc các nhà máy, khu công nghiệp không ngừng mọc lên nên việc thiết kế cấp điện sao cho an toàn, kinh tế, hiệu quả là việc hết sức cần thiết. Xuất phát từ yêu cầu thực tế, việc thiết kế một hệ thống cung cấp điện không chỉ là nhiệm vụ mà là sự củng cố toàn diện cho sinh viên ngành điện. Với đề tài tốt nghiệp là “Thiết kế cung cấp điện cho công ty thép Việt – Hàn” và được sự chỉ bảo hướng dẫn của các thầy cô trong bộ môn mà đặc biệt là thầy Th.s Nguyễn Đoàn Phong đã giúp em hoàn thành nhiệm vụ tốt nghiệp này. Mặc dù đã có gắng song không tránh khỏi thiếu sót do sự hiểu biết có hạn. Vậy em mong sự góp ý của các thầy cô trong bộ môn để bản đồ án của em được hoàn thiện hơn. Em xin chân thành cám ơn! 1
  2. CHƢƠNG 1. TỔNG QUAN VỀ CUNG CẤP ĐIỆN CHO CÔNG TY THÉP VIỆT – HÀN 1.1. ĐIỀU KIỆN TỰ NHIÊN VÀ CƠ SỞ HẠ TẦNG CÔNG TY THÉP VIỆT – HÀN 1.1.1. Vị trí và các điều kiện tự nhiên Công ty thép Việt – Hàn nằm ở km 9, quốc lộ 5 (cũ), phường Quán Toan, quận Hồng Bàng, thành phố Hải Phòng. Với tổng diện tích 60000m2, sản phẩm chính của nhà máy là thép tròn cuộn và thép thanh vằn. Có lợi thế gần đường quốc lộ thuận tiện cho việc lưu thông sản phẩm cũng như cung ứng nguồn nguyên, nhiên liệu cho cả nhà máy bằng đường bộ, đường thủy và cả đường sắt. Tuy nhiên, nhà máy cũng gặp không ít khó khăn và thách thức như: Do nằm ở vùng duyên hải, trong miền nhiệt đới gió mùa, với độ ẩm cao trên 80% cho nên đã làm ảnh hưởng không nhỏ đến các thiết bị, khí cụ điện cũng như ảnh hưởng tới chất lượng thép của công ty. Do đó đã làm tăng chi phí vận hành, sửa chữa, bảo dưỡng, giảm tuổi thọ các thiết bị cũng như tăng vốn đầu tư ban đầu cho công ty. Công ty thép Việt – Hàn với sản phẩm chính là các loại thép chuyên phục vụ các công trình xây dựng. Dây chuyền cán thép của nhà máy dựa trên công nghệ tiên tiến của Italia với 4 công đoạn chính là: cán thô, cán trung , cán tinh, cán block. Do đó cần những tính toán thiết kế để đáp ứng những yêu cầu sau: 1. Nâng cao chất lượng, giảm tổn thất điện năng. 2. Phí tổn về kinh tế hàng năm là nhỏ nhất. 3. An toàn trong vận hành, thuận tiện trong bảo trì và sửa chữa. 2
  3. 4. Đảm bảo cung cấp điện có độ tin cậy cao. 1.1.2. Cơ cấu tổ chức của công ty thép Việt – Hàn 1. Nhà hành chính : có nhiệm vụ tổ chức, quản lý và sản xuất kinh doanh. 2. Phân xưởng cán : đây là phân xưởng sản xuất chính, sản xuất trực tiếp ra sản phẩm. 3. Còn lại là các nhà , phòng ban liên quan như nhà tập thể thao , kho, sân bãi, nhà ăn . Công ty thép Việt – Hàn là một đơn vị độc lập với bộ máy quản lý theo hình thức trực tuyến – tham mưu với mô hình được biểu diễn như hình 1.1. C«ng ty Gi¸m ®èc P. Gi¸m ®èc P. Gi¸m ®èc kü thuËt kinh doanh Phßng kü Phßng Phßng vËt Ph©n thuËt kinh doanh tu xuëng Hình 1.1: Sơ đồ tổ chức nhà máy. 3
  4. 1.1.3. Cơ cấu điều hành của phân xƣởng công ty thép Việt – Hàn Trong phân xưởng công ty thép bao gồm quản đốc, phó quản đốc và các tổ trưởng. Cơ cấu chức năng được biểu diễn trên hình 1.2. Quản đốc PQĐ1 PQĐ2 PQĐ3 Tổ trưởng 1 Tổ trưởng 2 Thợ cơ khí Thợ cơ khí Thợ cơ khí Thợ điện Thợ điện Hình 1.2: Sơ đồ tổ chức của phân xưởng công ty. 4
  5. Mặt bằng sản xuất nhà máy được bố trí như hình 1.3. Kho X•ëng s¶n xuÊt Nhµ hµnh Nhµ ¨n Nhµ thÓ Nhµ t¾m & chÝnh thao thay ®å Hình 1.3: Sơ đồ mặt bằng nhà máy. 5
  6. 1.1.4. Thống kê phụ tải của công ty Với diện tích lớn nhà máy cần thiết kế cung cấp điện trong đề tài này có quy mô lớn. Công ty có các phụ tải sau: Bảng 1.1: Danh sách các phụ tải của nhà máy Số Công suất Ghi Stt Tên thiết bị Kí hiệu lƣợng (kW) chú 1 Giá cán thanh S1h-S6h 06 250 2 Giá cán thanh S7h-S13h 06 300 3 Giá cán thanh S14-S18h 06 400 4 Giá cán cuộn Bm1-Bm2 02 850 5 Máy cắt Sh1 01 140 6 Máy cắt Sh2 01 75 7 Con lăn kẹp kéo Pr2-Pr6 05 15 8 Con lăn kẹp kéo Pr7 01 22 9 Con lăn kẹp kéo Pr8 01 50 10 Động cơ tạo cuộn Lh 01 100 11 Sàn nguội 01 110 12 Máy cắt Sh3 01 140 13 Máy cắt sự cố RCS 01 45 14 Máy cắt phân đoạn Ds1 01 7.5 15 Máy cắt phân đoạn Ds2 01 705 16 Quạt gió CC 04 15 17 Động cơ truyền con lăn 06 5,5 18 Động cơ con lăn so đầu 02 2,2 19 Động cơ vó 01 7,5 20 Động cơ vó 01 3,7 6
  7. Bảng 1.1: Danh sách các phụ tải của nhà máy (tiếp) 21 Động cơ vó 02 15 22 Máy cắt 01 37 23 Cuộn 03 15 24 Quạt gió 01 132 25 Động cơ làm mát 03 110 26 Động cơ bàn con lăn 28 0,55 27 Động cơ xe ca 01 7,5 28 Động cơ tháp nước 02 22 29 Động cơ bơm nước 02 75 30 Động cơ bơm nước 02 55 31 Động cơ máy nén khí 03 150 32 Động cơ bàn nạp phôi 01 7,5 33 Động cơ bàn nhận phôi 01 3,7 34 Động cơ bơm mỡ cán thô 01 0,37 35 Đông cơ bơm mỡ cán trung 01 0,75 36 Động cơ bơm mỡ cán tính 01 0,85 37 Động cơ bơm mỡ cán block 01 0,85 38 Đông cơ bơm dầu cán thô 01 22 39 Đông cơ bơm dầu cán trung 01 25 40 Động cơ bơm dầu cán tính 01 25 41 Động cơ bơm dầu cán block 01 30 42 Động cơ bơm dầu bó cuộn 01 30 Động cơ bơm dầu máy bó 01 22 43 thép thanh 7
  8. Dự kiến trong tương lai công ty sẽ mở rộng quy mô, sản xuất lắp đặt thêm các thiết bị hiện đại vì vậy việc thiết kế cung cấp điện phải đảm bảo sự gia tăng phụ tải trong tương lai. Về mặt kinh tế và kĩ thuật phải đề ra phương án cấp điện sao cho không gây quá tải sau vài năm sản xuất, cũng như không quá dư thừa không khai thác hết công suất dự trữ gây lãng phí. Vì vậy việc thiết kế, lựa chọn các thiết bị cần phải đảm bảo cả về mặt kinh tế cũng như kĩ thuật. 1.1.5. Công nghệ và các sản phẩm thép của công ty Thép Việt – Hàn được sản xuất theo công nghệ tiên tiến của Italia với: - Gồm 24 giá cán thanh. - Hoàn toàn tự động hóa. - Được bảo dưỡng định kì nghiêm ngặt. Quy trình công nghệ của công ty được thể hiện ở hình 1.4 Hình 1.4: Quy trình công nghệ của công ty. Sản phẩm chính của công ty là 2 loại thép: + Thép cuộn tròn. + Thép thanh vằn. 8
  9. Trong đó : - Thép tròn cuộn: Công ty sản xuất theo các tiêu chuẩn JIS G3505 (Nhật Bản) và TCVN 1651-1985 (Việt Nam), kích cỡ Φ5.5, Φ6, Φ8 và Φ10. Được sản xuất bằng dây chuyền 24 giá cán hoàn toàn tự động động của Italia với tốc độ 60m/s và làm nguội trực tiếp bằng nước với áp lực lớn nên thép tròn cuộn của VPS có tiết diện tròn đều, bề mặt nhẵn bóng và có khả năng chống ôxy hoá cao. Bảng 1.2: Dung sai đường kính thép tròn cuộn Tiêu chuẩn Đƣờng kính (mm) Dung sai (mm) Độ oval (mm) JIS G3505-1996 Ф5.5, Ф6, Ф8, Ф10 ± 0.5 0.6 max TCVN 1650-1985 Ф6, Ф8, Ф10 ± 0.5 0.7 max. - Thép thanh vằn: Công ty chuyên sản xuất các loại thép thanh vằn chất lượng tốt, đa dạng về kích cỡ từ D10 ~ D40 mm theo các tiêu chuẩn quốc tế như Tiêu chuẩn Nhật Bản (JIS G 3112-1987), Anh Quốc (BS 4449-1997), Mỹ (ASTM A615/A615M-96a) và Việt Nam (TCVN 1651-1985 & TCVN 6285- 1997). Được sản xuất bằng dây chuyền công nghệ hiện đại, thép thanh vằn VPS không những có chất lượng bảo đảm đáp ứng tiêu chuẩn mà còn có kiểu dáng đẹp với tiết diện tròn đều, bề mặt nhẵn bóng, gân thép chéo dạng xoắn vít. Trên thân cây thép có hình logo "VPS" giúp khách hàng dễ dàng nhận biết và phân biệt với những sản phẩm cùng loại của các nhà sản xuất khác trên thị trường. 9
  10. Bảng 1.3: Dung sai trọng lượng của thép thanh vằn Đƣờng kính Diện tích mặt Trọng lƣợng Dung sai trọng Tiêu chuẩn (mm) cắt (mm) (kg/m) lƣợng (%) D10 71.33 0.560 ± 6 D13 126.70 0.995 D16 198.60 1.559 D19 286.50 2.249 ±5 D22 387.10 3.039 JIS G 3112- D25 506.70 3.978 1987 D29 5.043 642.40 D32 6.234 794.20 ±4 D35 956.60 7.509 D38 1140.00 8.949 D10 78.50 0.616 D12 113.04 0.887 D14 153.86 1.208 D16 200.96 ± 5 1.578 D18 254.34 1.997 TCVN 6285 - D20 314.00 2.465 1997 D22 379.94 2.983 D25 490.63 3.851 D28 615.44 4.831 D32 803.84 6.310 ±4 D36 1017.36 7.986 D40 1256.00 9.860 1.1.6. Các kết quả đạt đƣợc 10
  11. Được sự tín nhiệm của các nhà đầu tư, nhà tư vấn và nhà thầu xây dựng, sản phẩm thép của công ty thép Việt – Hàn đã và đang góp phần xây dựng nên nhiều công trình lớn trên khắp cả nước như: + Khu công nghiệp Nomura (Hải Phòng) + Nhà máy Nhiệt điện Phả Lại + Thủy điện Yaly + Tháp Hà Nội + Khách sạn Daewoo - Hà Nội + Trung tâm Thương mại Tràng Tiền + Cầu Hàm Rồng + Cầu Tân Đệ + Cầu Mỹ Thuận + Khu chung cư Linh Đàm + Sân vận động Quốc gia Mỹ Đình + Trung tâm Hội nghị Quốc gia và nhiều công trình khác. Với mong muốn đem lại những sản phẩm tốt nhất tới khách hàng công ty thép Việt – Hàn không ngừng nỗ lực cam kết tạo nên các công trình tốt hơn nữa, thêm nhiều sản phẩm mang tầm quốc gia cũng như vươn xa ra thế giới. 11
  12. CHƢƠNG 2. XÁC ĐỊNH PHỤ TẢI TÍNH TOÁN CHO PHÂN XUỞNG VÀ TOÀN CÔNG TY 2.1. GIỚI THIỆU PHỤ TẢI ĐIỆN CỦA TOÀN CÔNG TY 2.1.1. Các đặc điểm của phụ tải điện Phụ tải điện của nhà máy máy chia làm 2 loại phụ tải - Phụ tải động lực - Phụ tải chiếu sáng Phụ tải động lực và phụ tải chiếu sáng thường làm việc ở chế độ dài hạn, điện áp yêu cầu trực tiếp tới thiết bị 600, 400 V với tần số công nghiệp là f=50Hz 2.1.2. Các yêu cầu về cung cấp điện cho công ty Các yêu cầu về cung cấp điện phải dựa vào phạm vi và mức độ quan trọng của các thiết bị để từ đó vạch ra các phương án cấp điện cho từng thiết bị cũng như các phân xưởng trong nhà máy, đánh giá tổng thể toàn nhà máy ta thấy : phụ tải của nhà máy chủ yếu là các động cơ điện có công suất lớn, trung bình, nhỏ đèn chiếu sáng. Nhà máy mất điện sẽ gây ra hàng loạt phế phẩm ( như ở bộ phận lò lung ) và gây lãng phí sức lao động rất nhiều đồng thời gây thiệt hại lớn về kinh tế mặc dù mất điện không gây nguy hiểm tới tính mạng con người. Vì vậy yêu cầu cung cấp điện phải đảm bảo liên tục. 2.2. CÁC PHƢƠNG PHÁP XÁC ĐỊNH PHỤ TẢI TÍNH TOÁN CHO TOÀN CÔNG TY 2.2.1. Cơ sở lý luận Dựa vào các số liệu phụ tải của công ty thép Việt – Hàn đã thu thập được thiết kế cung cấp điện cho nhà máy. Việc thiết kế mạng nhằm mục đích : - Nâng cao chất lượng, giảm tổn thất điện năng. - Phí tổn về kinh tế hàng năm là nhỏ nhất. 12
  13. - An toàn trong vận hành, thuận tiện trong bảo trì và sửa chữa. - Đảm bảo cung cấp điện có độ tin cậy cao. 2.2.2. Khái niệm phụ tải tính toán ( phụ tải điện ) Phụ tải tính toán ( hay còn gọi là phụ tải điện ) là phụ tải không có thực, nó không cần thiết cho việc chọn các trang thiết bị cung cấp điện (CCĐ) trong mọi trạng thái vận hành của hệ thống CCĐ. Phụ tải tính toán không phải là tổng công suất đặt của các thiết bị điện, việc sử dụng điện là không có quy luật. Trong thực tế vận hành ở chế độ đài hạn người ta muốn rằng phụ tải thực tế không gây ra những phát nóng trang thiết bị CCĐ ( dây dẫn, máy biến áp, thiết bị đóng cắt ). Ngoài ra ở chế độ ngắn hạn thì nó không được gây ra cho cá thiết bị bảo vệ ( ví dụ ở các chế độ khởi động của các phụ tải thì cầu chì hoặc các thiết bị bảo vệ khác không được cắt ). Như vậy, phụ tải tính toán thực chất là phụ tải giả thiết tương đương với phụ tải thực tế về một vài phương diện nào đó. Trong thực tế thiết kế người ta thường quan tâm tới hai yếu tố cơ bản do phụ tải gây ra đó là phát nóng và tổn thất, vì vậy tồn tại hai loại phụ tải tính toán cần được xác định đó là phụ tính toán theo điều kiện phát nóng và phụ tải tính toán theo điều kiện tổn thất. - Phụ tải tính toán theo điều kiện phát nóng là phụ tải giả thiết lâu dài không đổi tương đương với phụ tải thực tế biến thiên về hiệu quả nhiệt lớn nhất. - Phụ tải tính toán theo điều kiện tổn thất thường được gọi là phụ tải đỉnh nhọn là phụ tải cực đại ngắn hạn xuất hiện trong một thời gian ngắn từ 1 đến 2 giây chúng chưa gây ra phát nóng cho các trang thiết bị nhưng lại gây tổn thất có thể là nhảy các bảo vệ hoặc làm đứt cầu chì. Trong thực tế phụ tải đỉnh nhọn thường xuất hiện khi khởi động 13
  14. các đóng cắt các động cơ hoặc khi đóng cắt các thiết bị cơ điện khác. Để xác định phụ tải tính toán là rất khó, nhưng ta có thể dùng các phương pháp gần đúng trong tình toán. Có nhiều phương pháp như vậy, người kĩ sư cần phải căn cứ thông vào thông tin thu nhận được trong từng giai đoạn thiết kế để chọn phương án thích hợp, càng có nhiều thông tin ta càng chọn được phương pháp chính xác hơn. 2.2.3. Các phƣơng pháp xác định phụ tải tính toán và ƣu nhƣợc điểm của các phƣơng pháp 2.2.3.1. Xác định phụ tải tính toán theo suất phụ tải trên 1 đơn vị diện tích (F) sản xuất Thường dùng phương pháp này khi thông tin mà ta biết được là diện tích F (m2 ) của khu chế xuất và ngành công nghiệp ( nặng hay nhẹ ) của khu chế xuất đó . Mục đích là dự báo phụ tải để chuẩn bị nguồn ( như nhà máy điện, đường dây không , trạm biến áp ). Từ các thông tin trên ta xác định phụ tải tính toán theo suất phụ tải trên một đơn vị diện tích sản xuất. Stt = s0.F hay Ptt = p.F ( 2.1) Trong đó : 2 s0 [kVA/ m ] : Suất phụ tải trên một đơn vị diện tích. 2 p0 [ kW/m ] : Suất phụ tải trên một đơn vị diện tích sản suất. F [ m2] : Diện tích sản xuất có bố trí các thiết bị dùng điện. Để xác định s0 ( p0 ) ta dựa vào kinh nghiệm: - Đối với các ngành công nghiệp nhẹ ( dệt, may, giầy dép, 2 bánh kẹo, ) ta lấy s0 = ( 100 – 200 ) kVA/m 14
  15. - Đối với các ngành công nghiệp nặng ( cơ khí, hóa chất, dầu khí, luyện kim, xi măng, ) ta lấy s0= ( 300 – 400 ) kVA/m2. Phương pháp này cho kết quả gần đúng . Nó được dùng cho những phân xưởng có mật độ máy móc phân bố tương đối đều như : phân xưởng dệt, sản xuất vòng bi, gia công cơ khí v.v. Nó được dùng để tính toán thiết kế chiếu sáng. 2.2.3.2. Xác định phụ tải tính toán theo suất tiêu hao điện năng trên một đơn vị sản phẩm Nếu khu chế xuất đó là một xí nghiệp và biết được sản lượng thì ta xác định phụ tải tính toán cho khu chế xuất theo suất tiêu hao điện năng trên một đơn vị sản phẩm và tổng sản lượng . M.Wo Ptt ( 2.2) T max Qtt = Ptt . tgυ ( 2.3) Trong đó: W0 ( kWh/ 1sp) : Điện năng cần thiết để sản xuất 1 sản phẩm. M : Tổng sản phẩm sản xuất trong 1 năm (sp). Tmax ( h ) : Thời gian sử dụng công suất lớn nhất. Chú thích: Tmax là thời gian nếu hệ thống cung cấp điện chỉ truyền tải công suất lớn nhất thì sẽ truyền tải được một lượng điện năng truyền tải trong thực tế một năm. Ta có thể xác định Tmax theo bảng sau: Bảng 2.1: Bảng xác định Tmax Các xí nghiệp Nhỏ hơn 3000h Trong khoảng Lớn hơn 5000h 3000 – 5000 h Xí nghiệp 1 ca X - - Xí nghiệp 2 ca - X - Xí nghiệp 3 ca - - X 15
  16. Trong đó: ( X ) : là ô ta chọn. ( - ) : là ô ta không chọn. 2 2 Ptt Từ đó ta có: Stt = P Q = (2.4) tt tt cos Cosυ : Hệ số công suất ( Tra sổ tay cùng Tmax ). Phương pháp này chỉ áp dụng khi các hộ tiêu thụ có phụ tải thực tế không thay đổi, phụ tải tính toán bằng phụ tải trung bình hay hệ số đóng điện lấy là 1, hệ số phụ tải thay đổi ít. Chú ý: Hai phương pháp trên chỉ áp dụng trong giai đoạn dự án khả thi. 2.2.3.3. Xác định phụ tải tính toán theo công suất đặt và hệ số nhu cầu (knc) Thông tin mà ta biết được là diện tích nhà xưởng F ( m2 ) và công suất đặt Pđ (kW) của các phân xưởng và phòng ban nhà máy. Mục đích là: + Xác định phụ tải tính toán cho các phân xưởng. + Chọn biến áp cho phân xưởng. + Chọn dây dẫn về phân xưởng. + Chọn các thiết bị đóng cắt cho phân xưởng. Phụ tải tính toán của một phân xưởng được xác định theo công suất đặt Pđ và hệ số nhu cầu knc ( tra sổ tay trang 254, phụ lục I.3 sách THIẾT KẾ CẤP ĐIỆN ) theo các công thức sau: n n Ptt = Pđl = knc . Pđi = knc . Pđmi (2.5) Qtt = Qđl = Ptt . tgυ (2.6) Từ đó ta xác định được phụ tải tính toán của phân xưởng ( px ) như sau : Pttpx = Pđl + Pcs (2.7) Qttpx = Qđl + Qcs (2.8) 16
  17. Vì phân xưởng dùng đèn sợi đốt nên đối với phụ tải chiếu sáng thì υ = 0 ( cosυ = 1 ), ta có Qcs = Pcs . tgυ = 0. Chú ý nếu dùng đèn tuýp hoặc quạt thì ta có cosυ = 0.8, nếu dùng 2 quạt thì cosυ = 0.8 và 1 đèn sợi đốt cosυ = 1 thì ta lấy chung là cosυ = 0.9 Nếu hệ số công suất cosυ của các thiết bị trong nhóm khác nhau thì ta tính hệ số công suất trung bình: p .cos p .cos p .cos p .cos Cosυ = 1 1 2 2 3 3 n n (2.9) p1 p2 p3 pn Trong các công thức trên: knc - hệ số nhu cầu [ 4, trang 254] Pđ - công suất đặt. n - số động cơ 2 P0 (W/m ) – suất phụ tải chiếu sáng (1, trang 253). Pđl, Qđl - các phụ tải động lực của phân xưởng. Pcs, Qcs – các phụ tải chiếu sáng của phân xưởng. 2 2 Từ đó ta có: Sttpx = P ttpx Q ttpx (2.10) Vậy phụ tải tính toán của cả nhà máy là: m PttNM = kđt . Pttxi (2.11) i 1 m QttNM = kđt . Qttxi (2.12) i 1 2 2 Từ đó ta có: SttNM = P ttNM Q ttNM (2.13) P Cosυ = ttNM ( 2.14) S ttNM Trong đó: kđt - hệ số đồng thời (thường có giá trị từ 0.85 – 1). 17
  18. m - số phân xưởng và phòng ban, nhóm thiết bị. Phương án này có ưu điểm đơn giản, tiện lợi nên được ứng dụng rộng rãi trong tính toán. Nhưng có nhược điểm kém chính xác vì knc tra trong bảng số liệu tra cứu nó không phụ thuộc vào chế độ vận hành và số thiết bị trong nhóm nhưng thực tế knc = ksd . kmax vì vậy chế độ vận hành và số thiết bị trong nhóm thay đổi nhiều thì kết quả kém chính xác. Phương pháp này thường dùng trong giai đoạn xây dựng nhà xưởng. 2.2.3.4. Xác định phụ tải tính toán theo hệ số cực đại kmax ,công suất trung bình Ptb Thông tin mà ta biết được là khá chi tiết, ta bắt đầu thực hiện việc phân nhóm các thiết bị máy móc. Với 1 động cơ: Ptt = Pđm (2.15) Với nhóm động cơ n ≤ 3: n Ptt = Pđmi (2.16) 1 Với n ≥ 4 phụ tải tính toán của nhóm động cơ xác định theo công thức: Sau đó ta xác định phụ tải tính toán của một nhóm n máy theo công suất trung bình Ptb và hệ số cực đại kmax theo các công thức sau: n Ptt = kmax . Ptb = kmax . ksd . Pđmi (2.17) i 1 Qtt = Ptt . tgυ (2.18) Stt Itt = (2.19) 3.U đm Trong đó: n – số máy trong một nhóm. Ptb – công suất trung bình của nhóm phụ tải trong ca máy tải lớn nhất n (Ptb = ksd. P ). i 1 18
  19. Pđm (kW) – công suất định mức của máy, nhà máy chế tạo cho. Uđm – điện áp dây định mức của lưới (Uđm = 380V). ksd – hệ số sử dụng công suất hữu công của nhóm thiết bị (1, trang 253). kmax – hệ số cực đại của công suất hữu công của nhóm thiết bị ( hệ số này được xác định theo hệ số sử dụng ksd và số thiết bị dùng điện hiệu quả nhq , tra tài liệu (1, trang 265). nhq – số thiết bị dùng hiệu quả : là số thiết có công suất bằng nhau, có cùng chế độ làm việc gây ra một phụ tải tính toán đúng bằng phụ tải tính toán do nhóm thiết bị điện thực tế có công suất và chế độ làm việc khác nhau gây ra. Các bước xác định nhq : - Bước 1: Xác định n1 là số thiết bị có công suất lớn hơn hoặc bằng một nửa công suất của thiết bị có công suất lớn nhất. n1 - Bước 2 : Xác định P1 = Pđmi (2.20) i 1 - Bước 3 : Xác định n n* = 1 (2.21) n P P* = 1 (2.22) P P : Tổng công suất của các thiết bị trong nhóm thiết bị (nhóm phụ tải) đang xét. * * * - Bước 4 : Tra (4, trang 255) ta được nhq theo n và P * - Bước 5 : Tính nhq = n . nhq (2.23) Chú ý: - Nếu trong nhóm có phụ tải 1 pha đấu vào Upha (220V) như quạt gió, ta phải quy đổi về 3 pha như sau: P = 3 . Pđm ( 2.24) - Nếu trong nhóm có phụ tải 1 pha đấu vào Udây (380V) như biến áp hàn, ta quy đổi về 3 pha như sau: P = 3 . Pđm (2.25) 19
  20. - Nếu trong nhóm có thiết bị làm việc ở chế độ ngắn hạn lặp lại như cầu trục, cẩu, ta quy đổi về chế độ dài hạn như sau: P = Pđm . kd % (2.26) Trong đó kd% - hệ số đóng điện phần trăm lấy theo thực tế. Từ đó ta tính được phụ tải tính toán của cả phân xưởng theo các công thức sau: n Pđl = kđt . Ptti (2.27) i 1 Pcs = P0 . D ( 2.28 ) n Qđl = kđt . Qtti ( 2.29 ) i 1 Qcs = Pcs . tgυ ( 2.30 ) Các phân xưởng của các nhà máy trong thực tế thường dùng đèn sợi đốt nên Qcs = 0 Vậy ta tính được: Ppx = Pđl + Pcs ( 2.31 ) Qpx = Qđl + Qcs ( 2.32 ) Qpx = Qđl ( do Qcs = 0 ) ( 2.33 ) 2 2 Spx = P px Q px ( 2.34) S px Ittpx = ( 2.35 ) U đm . 3 Trong đó : n, m : Số nhóm máy của phân xưởng mà ta đã nhóm ở phần trên. kđt : Hệ số đồng thời ( thường có giá trị từ 0.85 – 1 ) Nhận xét: Phương pháp này thường được dùng để tính phụ tải tính toán cho 1 nhóm thiết bị, cho các tủ động lực trong toàn bộ phân xưởng. Nó cho ta kết quả khá chính xác, nhưng phương pháp này đòi hỏi một lượng thông tin đầy đủ về các phụ tải như: chế độ làm việc của từng phụ tải, công suất đặt của từng phụ tải, số lượng các thiết bị trong nhóm ( ksdi, Pđmi, cosυi, ). 20
  21. 2.2.3.5. Phƣơng pháp xác định phụ tải trong tƣơng lai của công ty Trong tương lai dự kiến công ty sẽ được mở rộng và thay thế, lắp đặt các máy móc hiện đại hơn. Công thức tính toán: SNM(t) = SttNM(1+αt) (2.36) Với 0<t<T Trong đó: SNM(t): là phụ tải tính toán của công ty sau t năm. SttNM : Là phụ tải tính toán của công ty ở thời điểm khởi động. α : Hệ số phát triển hàng năm của phụ tải cực đại (α thường lấy từ 0.0595 – 0.0685). t : Thời gian dự kiến trong tương lai. 2.3. TÍNH PHỤ TẢI TÍNH TOÁN CỦA CÁC PHÂN XƢỞNG VÀ TOÀN CÔNG TY 2.3.1. Phân loại và phân nhóm phụ tải cho phân xƣởng Để phân nhóm phụ tải ta dựa vào các nguyên tắc sau: + Các thiết bị trong nhóm nên có cùng một chế độ làm việc. + Các thiết bị trong nhóm nên được đặt gần nhau, tránh chồng chéo khi đi dây và sẽ giảm được tổn thất. + Tổng công suất các thiết bị trong nhóm cũng nên cân đối để khỏi quá chênh lệch giữa các nhóm nhằm tạo tính đồng loại cho các trang thiết bị cung cấp điện. + Số lượng các thiết bị cùng một nhóm không nên quá nhiều ví số lộ ra của các tủ động lực cũng bị hạn chế và nếu đặt qua nhiều sẽ làm phức tạp trong vận hành sửa chữa, cũng như làm giảm độ tin cậy cung cấp điện cho từng thiết bị. 21
  22. 2.3.2. Xác định phụ tải tính toán cho các nhóm thiết bị khu vực sản xuất Vì đã có các thông tin chính xác về mặt bằng bố trí máy móc thiết bị, biết được công suất và quá trình công nghệ của từng thiết bị, nên ta xác định phụ tải tính toán theo công suất trung bình và hệ số cực đại. 2.3.2.1. Xác định phụ tải tính toán cho nhóm 1 Vì công suất của các thiết bị rất lớn ta chọn theo như sau: Tra sách (PLI.1, trang 253), sách “Thiết kế cấp điện – Ngô Hồng Quang & Vũ Văn Tẩm”. ksd = 0,7 ; cosυ = 0,7 vậy tgυ = 1,02 Bảng 2.2: Bảng số liệu nhóm 1 Pđm( kW) Stt Tên thiết bị Số lƣợng Kí hiệu Iđm( A) 1 máy Toàn bộ 1 Giá cán thanh 04 S1h÷S4h 250 1000 4x300,7 ∑ nhóm 1 10 1000 1202,8 Các thiết bị đều làm việc ở chế độ dài hạn nên ta không cần phải quy đổi Công suất lớn nhất của thiết bị là Pđmmax = 250 kW; Sô thiết bị có công suất lớn hơn hoặc bằng 0,5.Pđmmax là n1=4; Suy ra: P1 = 1000kW; n 4 P 1000 n*= 1 = =1 P*= 1 = = 1 n 4 P 1000 * * Tra bảng sách (PLI.5, trang 255), sách “Thiết kế cấp điện” nhq* ( n , P ) ta * được nhq = 0,95 Vậy số thiết bị dùng điện hiệu quả của nhóm 1 là : * nhq = n . nhq = 4 . 0,95 = 3,8; Tra bảng trang 256 từ ksd= 0,7 và nhq = 3,8 ta có kmax = 1,29; → Phụ tải tính toán của nhóm 1: 4 Ptt1 = kmax . ksd . Pđmi = 1,29 . 0,7 . 1000 = 903 kW i 1 22
  23. Qtt1 = Ptt1 . tgυ = 903 . 1,02 = 921,06 kVAr Ptt1 903 Stt1 = = = 1290 kVA cos 0.7 Dòng điện tính toán của cả nhóm : Stt1 1290 Itt1 = = = 1241,3 A U đm . 3 0,6. 3 2.3.2.2. Xác định phụ tải tính toán cho nhóm 8 Các thiết bị có n≤3 Tra tài liệu (PLI.1, trang 253), sách “Thiết kế cấp điện – Ngô Hồng Quang & Vũ Văn Tẩm” cosυ = 0,7 vậy tgυ = 1,02 Bảng 2.3: Bảng số liệu nhóm 8 Pđm (kW) Stt Tên thiết bị Số lƣợng Kí hiệu 1 máy Toàn bộ 1 Giá cán thanh 03 S11h-S12h 400 1200 ∑ thiết bị nhóm 8 03 1200 → Phụ tải tính toán của nhóm 8: 3 Ptt8 = Pđmi = 1200 kW i 1 Qtt8 = Ptt1 . tgυ = 1200 . 1,02 = 1224 kVAr Ptt 8 1200 Stt8 = = = 1714,28 kVA cos 0,7 Dòng điện tính toán của cả nhóm : Stt 8 1714 ,28 Itt8 = = = 1649,5 A U đm . 3 0,6. 3 Các nhóm còn lại tính toán tương tự, kết quả ghi trong bảng 23
  24. Bảng 2.4: Bảng phụ tải điện của phân xưởng sản xuất chính Hệ số Phụ tải tính toán Kí hiệu Công Hệ số Số thiết Tên nhóm và Số Iđm thiết bị cực trên mặt suất đặt sử dụng cosφ bị hiệu Ptt Qtt Stt Itt thiết bị điện lƣợng (A) đại bằng P0 (kW) ksd quả nhq kW kVA kVA A kmax 1 2 3 4 5 6 7 8 9 10 11 12 13 Nhóm 1 Giá cán thanh 04 Sh1 – Sh4 250 300,7x4 0,7 0,7 Cộng nhóm 1 04 1000 1202 0,7 0,7 3,8 1,29 903 921,06 1290 1241,3 Nhóm 2 Giá cán thanh 02 Sh5-Sh6 250 300,7x2 0,7 0,7 Giá cán thanh 02 Sh7-Sh8 300 360,84x2 0,7 0,7 Cộng nhóm 2 04 1100 1323,08 0,7 0,7 3,8 1.29 993,3 1013,1 1419 1365,4 Nhóm 3 Giá cán thanh 04 Sh 3000 360,84x4 24
  25. Cộng nhóm 3 1200 1443,3 0,7 0,7 3,8 1,29 1083,6 1105,2 1548 1489.5 Nhóm 4 Máy cắt 01 Sh1 140 252,5 0,7 0,7 Máy cắt 01 Sh2 75 135,31 0,7 0,7 Con lăn kẹp kéo 05 Pr 15 27,06x5 0,7 0,7 Con lăn kẹp kéo 01 Pr 22 39,69 0,7 0,7 Con lăn kẹp kéo 01 Pr 50 90,21 0,7 0,7 Động cơ tạo 01 lh 100 180,42 0,7 0,7 cuộn Sàn nguội 01 110 198,46 0,7 0,7 Máy cắt 01 Sh3 140 252,59 0,7 0,7 Máy cắt sự cố 01 rcs 45 81,18 0,7 0,7 Máy cắt phân 02 Ds1,Ds2 7,5 13,53x2 0,7 0,7 đoạn Cộng nhóm 4 15 772 1392,72 0,7 0,7 7,2 1.21 654,73 667,82 935,32 1350 Nhóm 5 25
  26. Quạt gió 04 CC 15x4 27,06x4 0,7 0,7 Động cơ truyền 06 5,5x6 9,92x6 0,7 0,7 con lăn Động cơ con lăn 02 2,2x2 3,96x2 0,7 0,7 so đầu Động cơ vó 01 7,5 13,57 0,7 0,7 Động cơ vó 01 3,7 6,67 0,7 0,7 Động cơ vó 02 15x2 27,06x2 0,7 0,7 Cưa 03 15x3 27,06x3 0,7 0,7 Cộng nhóm 5 19 190,2 303,62 0,7 0,7 15,58 1,12 149,12 152,1 217,29 313,63 26
  27. Nhóm 6 Máy cắt 01 37 66,75 0,7 0,7 Quạt gió 01 132 238,15 0,7 0,7 Động cơ làm 03 110x3 208,9x3 0,7 0,7 mát Động cơ bàn 06 0,55x6 0,99x6 0,7 0,7 con lăn Động cơ xe ca 01 7,5 13,57 0,7 0,7 Đcơ tháp nước 02 22x2 39,69x2 0,7 07 Cộng nhóm 6 14 553,8 1030,67 0,7 0,7 5,46 1,23 476,82 486,35 694,79 1001,7 27
  28. Nhóm 7 Động cơ bơm 02 75x2 135,31x2 0,7 0,7 nước Động cơ bơm 02 55x2 99,23x2 0,7 0,7 nước Động cơ máy 03 150x3 270,63x3 0,7 0,7 nén khí Động cơ bàn nạp 01 7,5 13,57 0,7 0,7 phôi Động cơ bàn 01 3,7 6,67 0,7 0,7 nhận phôi 28
  29. Động cơ bơm 01 0,37 0,66 0,7 0,7 mỡ cán thô Đông cơ bơm 01 0,75 1,35 0,7 0,7 mỡ cán trung Đông cơ bơm 01 0,85 1,53 0,7 0,7 mỡ cán tinh Động cơ bơm 01 0,85 1,53 0,7 0,7 mỡ cán block Động cơ bơm 01 22 39,36 0,7 0,7 dầu cán thô Động cơ bơm 01 25 45,1 0,7 0,7 dầu cán trung Động cơ bơm 01 25 45,1 0,7 0,7 dầu cán tinh Động cơ bơm 01 30 54,1 0,7 0,7 dầu cán block 29
  30. Động cơ bơm 01 30 54,1 0,7 0,7 dầu bó cuộn Động cơ bơm 01 22 39,36 0,7 0,7 dầu bó thép thanh Cộng nhóm 7 19 878,02 1376,7 0,7 0,7 11,78 1,15 706,8 720,9 1029,9 1486,53 30
  31. Vì các thiết bị có công suất lớn nên ta không phân nhóm đối với các thiết bị này mà đi dây trực tiếp từ máy biến áp các thiết bị này sẽ được bố trí theo các trạm biến áp ở chương 3 khi thiết kế cao áp. Với các nhóm có số thiết bị n ≤ 3 Bảng 2.5: Tổng hợp các thiết bị Công suất, Nhóm thiết bị Số lƣợng Ptt, kW Qtt, kVAr Stt, kVA Itt,A kW Nhóm 8 Giá cán thanh 03 400 1200 1224 1714,28 1649,56 Nhóm 9 Giá cán thanh 03 400 1200 1224 1714,28 1649,56 Nhóm 10 Giá cán cuộn 01 850 850 867 1214,28 1168,44 Nhóm 11 Giá cán cuộn 01 850 850 867 1214,28 1168,44 2.3.3. Xác định phụ tải tính toán cho khu vực nhà hành chính Bảng 2.6: Bảng số liệu khu nhà hành chính. Stt Tên Số lƣợng Công suất (kW) 1 Phòng làm việc 12 2,5 2 Phòng họp 1 3 3 Phòng bảo vệ 1 2,5 4 Phòng tiếp khách 1 3 5 Nhà vệ sinh 2 2,5 6 Tổng 17 43,5 Vì các khu nhà hành chính chỉ biến công suất đặt do đó phụ tải tính toán được xác định theo phương pháp hệ số nhu cầu ( knc ) và công suất đặt. 31
  32. Tra (PL1.3, trang 254) sách “Thiết kế cấp điện” Ngô Hồng Quang – Vũ Văn Tẩm ta có : knc = 0,8 ; cosυ = 0,85. tgυ = 0,62 Thay vào công thức (2.4) ta được: Phụ tải tác dụng: Ptt(ĐL) = 0,8 . ( 2,5 . 12 + 3 . 1 + 2,5 1 + 3 . 1 + 2,5 . 2 ) = 34,8 (kW) Thay vào (1.6) ta được: Phụ tải phản kháng: Qtt(ĐL) = 34,8 . 0,62 = 21,57 (kVAr) Thay vào (1.11) ta có: Phụ tải tính toán toàn phần: 2 2 Stt = 34,8 21,57 = 40,67 (kVA) 2.3.4. Xác định phụ tải tính toán chiếu sáng cho toàn nhà máy Bảng 2.7: phân bố diện tích toàn nhà máy Stt Tên Diện tích (m2) 1 Xưởng sản xuất 15000 2 Nhà kho 900 3 Nhà hành chính 1000 4 Nhà ăn 800 5 Phòng tập thể thao 500 6 Phòng thay đồ và phòng tắm 600 Xác định phụ tải chiếu sáng theo phương pháp suất phụ tải trên một đơn vị diện tích (F) Áp dụng công thức (1.26) và (1.28) ta có: Pcs = P0 .D Qcs = Pcs . tgυcs * Nhà kho 32
  33. Chiếu sáng bằng đèn tuýp ta có: 2 P0 = 15W/m ; cosυ = 0,7; tgυ = 1,02; D = S = 900 m2. Thay vào ta có : Phụ tải tác dụng: Ptt = P0 . D = 15 . 900 = 13500W = 13,5 (kW) Phụ tải phản kháng: Qtt = Ptt . tgυ = 13,5 . 1,02 = 13,77 (kVAr) Phụ tải tính toán toàn phần: 2 S = P Q 2 = 13,52 13,772 = 19,2 (kVA) tt tt tt Dòng điện tính toán chiếu sáng của nhà kho: S tt 19,2 Itt = = = 29,1 (A) 0,38. 3 0,38. 3 Các phụ tải chiếu sáng của các phân xưởng và phòng ban được tính vào bảng sau: Bảng 2.8: Tổng hợp phụ tải chiếu sáng của công ty Công suất D P0 Itt Stt Tên cosφ Ptt(CS) Qtt(CS) Stt(CS) (m2) W/m2 (A) (kW) (kVAr) (kVA) 1 Kho 900 15 0,7 13,5 13,77 19,2 29,1 2 Xưởng sản xuất 15000 15 0,7 225 229,5 321,39 488,3 3 Nhà hành chính 1000 15 0.7 15 15,3 21,42 32,4 4 Nhà ăn 800 15 0,7 12 12,24 17,14 26,04 5 Phòng thể thao 500 15 0,7 7,5 7,65 10,71 16,27 6 Phòng tắm 600 15 0,7 9 9,18 12,85 19,52 7 Ngoài trời 60000 12 0,7 720 446,4 847,15 1287,12 33
  34. 2.3.5. Phụ tải tính toán của các phân xƣởng trong công ty Công suất tính toán của phân xưởng sản xuất chính: Ppx = Pđl + Pcs = 8095,14 + 225 = 8320,14 (kW) Qpx = Qđl + Qcs = 8256,9 + 229,5 = 8486,4 (kVAr) Qpx = Qcs nếu phân xưởng chỉ dùng đén sợi đốt ( Qcs = 0 ) 2 2 2 2 Spx = Ppx Q px = 8320,14 8486,4 = 11884,59 (kVA) P Cosυ = px = 8320 ,14 = 0,7 S px 11884 ,59 S px 11884 ,59 Ittpx = = = 11435,95 (kA) U đm . 3 0,6. 3 Công suất tính toán của khu nhà hành chính: Phc = Pđl + Pcs = 34,8 + 15 = 49,8 (kW) Qhc = Qđl + Qcs = 21,57 + 15,3 = 36,87 (kVAr) Qpx = Qcs nếu phân xưởng chỉ dùng đén sợi đốt ( Qcs = 0 ) 2 2 2 2 Shc = Ppx Q px = 49,8 36,87 = 61,96 (kVA) P 49,8 Cosυ = hc = = 0,8 Qhc 61,96 Shc 61,96 Itthc = = = 94,14 (kA) U đm . 3 0,38. 3 Bảng 2.9: Tổng hợp phụ tải công ty St Pđl Pcs Ptt Qtt Stt Itt Tên t (kW) (kW) (kW) (kVAr) (kVA) (kA) 1 Kho 13,5 13,5 13,77 19,2 29,1 2 Xưởng sản xuất 8095,14 225 8320,14 8486,4 11884,59 11435,9 3 Nhà hành chính 34,8 15 49,8 36,87 61,96 94,14 4 Nhà ăn 12 12 12,24 17,14 26,04 5 Phòng thể thao 7,5 7,5 7,65 10,71 16,27 6 Phòng tắm và thay 9 9 9,18 12,85 19,52 34
  35. đồ 7 Ngoài trời 720 720 446,4 847,15 1287,12 Tổng 8129,94 1002 9131,94 8975,64 12853,6 19528,9 2.3.6. Phụ tải tính toán của toàn bộ công ty kđt : Hệ số đồng thời Vì số phân xưởng là m=6 ta chọn kđt = 0.8 m PttCT = kđt . Pttpxi = 0,8 . 9131,94 = 7305,55 (kW) i 1 m QttCT = kđt . Qttpxi = 0,8 . 8975,64 = 7180,51 (kVAr) i 1 2 2 2 2 SttCT = PttCT QttCT = 7305,55 7180,51 = 10243,57 (kVA) P 7305 ,55 Cosυ = ttCT = = 0.7 S ttCT 10243 ,57 SttCT 10243 ,57 IttCT = = = 53,76 (A) UTA . 3 110 . 3 Khi kể đến sự phát triển tương lai của công ty: SCT(t) = SttCT (1+αt) Lấy α = 0,06 ; t = 10 năm ta có: SCT(t) = 10243,57 . (1 + 0,06 . 10) = 16389,71 (kVA) Lưu ý: - Tùy thuộc vào các thông tin được cung cấp như trong tương lai thì nhà máy định thay thế hay lắp đặt thêm những thiết bị hay máy móc nào, ở phân xưởng nào, mở rộng ra khu vực nào, công suất là bao nhiêu , người kĩ sư sẽ căn cứ vào đó để lựa chọn các trạm biến áp phân phối, cầu chì, aptomat, cho các phân xưởng, khu vực đó. 35
  36. - Để đơn giản, trong đồ án này ta không xét tới các yếu tố trên. 2.3.7. Xác định trọng tâm phụ tải toàn công ty Ý nghĩa của trọng tâm phụ tải trong thiết kế cấp điện: Trọng tâm phụ tải của nhà máy là một vị trí quan trọng giúp người thiết kế tìm điểm đặt trạm biến áp, trạm phân phối nhằm giảm tối đa tổn thất năng lượng. Ngoài ra, trọng tâm phụ tải còn có thể giúp nhà máy trong việc quy hoạch và phát triển sản xuất trong tương lai nhằm có các sơ đồ cung cấp điện hợp lý. Tâm phụ tải của nhà máy được xác định theo công thức: Theo sách “thiết kế cấp điện” Ngô Hồng Quang – Vũ Văn Tẩm(Trang 98): x1.p1 x2 .p 2 xn .pn xi = p1 p2 pn y1.p1 y2 .p 2 yn .pn yi = p1 p2 pn Chọn gốc tọa độ tính toán tại góc trái phía dưới của bản vẽ tức là khu bãi. - Vị trí kho: x1 = 12,5m; y1 = 35m - Vị trí xưởng cán thép: x2 = 40m ; y2 = 45m - Vị trí nhà hành chính: x3 = 85m ; y3 = 16m - Vị trí phòng thể thao: x4 = 98,5m ; y4 = 38m - Vị trí nhà ăn, phòng thay đồ: x5 = 50m ; y5 = 30m Ta có: 36
  37. 12,5.13,5 40.8320 ,14 49,8.85 12,24.98,5 16,25.50 xi = = 40,32m 8411 ,93 35.13,5 45.8320 ,14 16.49,8 38.98,5 30.16,25 yi = = 45,16m 8411,93 Như vậy theo tính toán tâm phụ tải của nhà máy có tọa độ x = 40,32m ; y = 45,16m. Vị trí này nằm gần như trong xưởng cán thép do đó ta đặt trạm biến áp bên ngoài phân xưởng , tránh lãng phí và đạt được các chỉ tiêu kinh tế, kĩ thuật tốt nhất. 37
  38. CHƢƠNG 3. PHƢƠNG ÁN CẤP ĐIỆN CHO CÔNG TY 3.1. PHƢƠNG ÁN CẤP ĐIỆN CAO ÁP 3.1.1 Yêu cầu đối với sơ đồ cấp điện Yêu cầu đối với sơ đồ cung cấp điện và nguồn cung cấp rất đa dạng. Nó phụ thuộc vào công suất yêu cầu của xí nghiệp. Khi thiết kế các sơ đồ cung cấp điện phải lưu ý tới các yếu tố đặc biệt đặc trưng cho nhà máy, các thiết bị đòi hỏi độ tin cậy cung cấp điện cao, các đặc điểm của quy trình sản xuất và quy trình công nghệ để từ đó xác định mức độ đảm bảo an toàn cung cấp điện, thiết lập sơ đồ cấu trúc điện hợp lý. Việc lựa chọn sơ đồ cung cấp điện phải có tính an toàn đảm bảo an toàn tuyệt đối cho người và thiết bị trong trạng thái vận hành. Ngoài ra, phải lưu ý tới các yếu tố kĩ thuật khác như đơn giản, thuận tiện, dễ vận hành, có tính linh hoạt trong việc khắc phục sự cố. 3.1.2. Phƣơng pháp cung cấp điện cho công ty 3.1.2.1. Phân loại và đánh giá hộ tiêu thụ điện trong công ty Nguyên tắc chung để đánh giá hộ tiêu thụ (Nhà máy, xí nghiệp) điện là ta dựa vào tầm quan trọng của hộ tiêu thụ, tức là khi ta ngừng cung cấp điện thì mức độ ảnh hưởng của nó tới hoạt động của toàn nhà máy là cao hay thấp, từ đó ta có thể xác định được loại phụ tải và sơ đồ cấp điện hợp lý cho các phân xưởng và toàn nhà máy. Theo nguyên tắc trên ta thấy công ty thép Việt – Hàn nếu xảy ra mất điện sẽ gây thiệt hại lớn về kinh tế, gây phế phẩm ở khu vực lò nung, ở dây truyền cán gây lãng phí sức. 38
  39. 3.1.2.2. Vị trí đặt trạm phân phối trung tâm (PPTT) của công ty Vì phụ tải chỉ tập trung chủ yếu ở phân xưởng sản xuất nên ta bố trí trạm biến áp trung gian và trạm phân phối trung tâm ngang cạnh phân xưởng này tọa độ x = 40,32; y = 45,16. Công ty thép Việt – Hàn nên ta chọn lộ cung cấp điện cho công ty theo vị trí có trạm điện ở gần nhất. Qua nghiên cứu về lý thuyết và trên cơ sở xác định được số lượng máy biến áp, vị trí đặt trạm biến áp ta tính được các phương án cấp điện sao cho đảm bảo chỉ tiêu kĩ thuật và kinh tế. 3.1.2.3. Xác định vị trí, số lƣợng, dung lƣợng các trạm biến áp phân xƣởng Chọn số lượng máy biến áp (MBA) cho các phân xưởng có ý nghĩa quan trọng đối với việc xây dựng một sơ đồ cung cấp điện hợp lý. Thông thường thì mỗi trạm chỉ đặt 1 MBA là tốt nhất. Ưu điểm là tiết kiệm đất đai, vận hành đơn giản, chi phí nhỏ. Tuy nhiên, có nhược điểm là đảm bảo an toàn cung cấp điện không cao. Vì tính chất của công ty cho nên để đảm bảo an toàn ta chỉ dùng 1 trạm biến áp có trạm trung gian, trạm phân phối, các MBA phân xưởng, máy biến áp chiếu sáng. Vị trí số lượng, dung lượng các trạm biến áp được chọn theo 2 phương án sau: Phương án 1: Dùng máy biến áp trung gian BA1 lấy theo nguồn cung cấp cho nhà máy theo vị trí trạm điện gần nhất. Lộ lấy nguồn từ trạm An Lạc là lộ cung cấp điện cho công ty thép Việt – Hàn là lộ duy nhất cấp điện cho nhà công ty cung cấp điện cho phân xưởng chính và các nhà hành chính liên quan Ta dùng 2MBA trung gian lấy nguồn theo 2lộ cung cấp điện cho công ty theo vị trí có trạm điện ở gần nhất: 39
  40. + Chọn công suất MBA trung gian: Stt1 16389 ,71 SđmMBA ≥ 11706 ,93kVA 1,4 1,4 ( 1.4 là hệ số quá tải ứng với 5 ngày 5 đêm, mỗi ngày quá tải không quá 6h ) Chọn dùng 2 máy biến áp loại 12500 – 110/6,6 kV của công ty thiết bị điện Đông Anh sản xuất. Do các máy biến áp sản xuất tại Việt Nam nên không phải hiệu chỉnh nhiệt độ. Chú ý: Máy ngoại nhập phải hiệu chỉnh nhiệt độ theo công thức: S tt SđmMBA ≥ K hc Tong đó: Khc : Hệ số hiệu chỉnh nhiệt độ 1 0 Khc = 1 - 100 0 θ1 : Nhiệt độ môi trường sử dụng máy ( C). 0 θ0 : Nhiệt độ môi trường chế tạo máy ( C). Từ tính toán trên ta chon dung lượng các máy biến áp - Biến áp 1 cấp điện cho nhóm thiết bị 10, 11 – BA1 - Biến áp 2 cấp điện cho nhóm thiết bị 8, 9 – BA2 - Biến áp 3 cấp điện cho nhóm thiết bị 3 – BA3 - Biến áp 4 cấp điện cho nhóm thiết bị 1, 2 – A4 - Biến áp 5 cấp điện cho nhóm thiết bị 4 – BA5 - Biến áp 6 cấp điện cho nhóm thiết bị 5 – BA6 - Biến áp 7 cấp điện cho nhóm thiết bị 6 – BA7 - Biến áp 8 cấp điện cho nhóm thiết bị 7 – BA8 - Biến áp 9 cấp điện cho chiếu sáng – BA9 40
  41. Bảng 3.1: Lựa chọn máy biến áp Tên MBA SđmBA,kVA Uđm, kV I0% ΔP0,W ΔPN, W UN% BATG 12500/2 110/6,6 1 15000 65000 10,5 BA1 3150 6,6/0,6 0,6 6800 27000 7 BA2 4000 6,6/0,6 0,6 8000 32500 9 BA3 2000 6,6/0,6 0,8 2800 13200 6 BA4 2500 6,6/0,6 0,8 3400 15000 6 BA5 1600 6,6/0,4 1 2700 11000 6 BA6 500 6,6/0,4 1,4 1300 4300 4 BA7 1600 6,6/0,4 1 2700 11000 6 BA8 1600 6,6/0,4 1 2700 11000 6 BA9 400 6,6/0,4 1,4 1060 3600 4 Phương án 2: Ta chỉ dùng 1 MBA trung gian để cấp điện cho 9 máy biến áp phân xưởng. SđmBA ≥ Stt = 16389,71kVA Vậy ta chọn SđmBA = 20MVA và các máy biến áp phân xưởng sản xuất chính cũng như máy biến áp chiếu sáng được chọn như phương án 1 - Biến áp 1 cấp điện cho nhóm thiết bị 10, 11 – BA1 - Biến áp 2 cấp điện cho nhóm thiết bị 8, 9 – BA2 - Biến áp 3 cấp điện cho nhóm thiết bị 3 – BA3 - Biến áp 4 cấp điện cho nhóm thiết bị 1, 2 – A4 - Biến áp 5 cấp điện cho nhóm thiết bị 4 – BA5 - Biến áp 6 cấp điện cho nhóm thiết bị 5 – BA6 - Biến áp 7 cấp điện cho nhóm thiết bị 6 – BA7 - Biến áp 8 cấp điện cho nhóm thiết bị 7 – BA8 - Biến áp 9 cấp điện cho chiếu sáng 41
  42. Các máy biến áp được chọn lựa theo bảng sau: Bảng 3.2: Lựa chọn máy biến áp Tên MBA SđmBA,kVA Uđm, kV I0% ΔP0,W ΔPN, W UN% BATG 20000 110/6,6 0,7 18800 93600 10,5 BA1 3150 6,6/0,6 0,6 6800 27000 7 BA2 4000 6,6/0,6 0,6 8000 32500 9 BA3 2000 6,6/0,6 0,8 2800 13200 6 BA4 2500 6,6/0,6 0,8 3400 15000 6 BA5 1600 6,6/0,4 1 2700 11000 6 BA6 500 6,6/0,4 1,4 1300 4300 4 BA7 1600 6,6/0,4 1 2700 11000 6 BA8 1600 6,6/0,4 1 2700 11000 6 BA9 400 6,6/0,4 1,4 1060 3600 4 Trong đó: ΔP0 : Tổn thất công suất tác dụng không tải của máy biến áp cho trong lý lịch máy kW. ΔPN : Tổn thất công suất tác dụng ngắn mạch của máy biến áp kW. i% : Giá trị tương đối của dòng điện không tải. UN% : Giá trị tương đối của điện áp ngắn mạch. 3.1.2.4. So sánh chỉ tiêu kinh tế, kĩ thuật của 2 phƣơng án Sau đây lần lượt tinh toán kinh tế, kĩ thuật cho 2 phương án. Cần lưu ý là mục đích tính toán phần này là so sánh tương đối giữa 2 phương án cấp điện, chỉ cần tính toán so sánh phần khác nhau giữa 2 phương án, Cả 2 phương án đều có những phần tử giống nhau: đường dây cung cấp từ trạm BATG về trạm PPTT, trạm biến áp phân xưởng, vì thế chỉ so sánh kinh tế kĩ thuật của hai mạng cáp cao áp. *Xét chỉ tiêu kinh tế kĩ thuật của phương án 1 42
  43. Nếu cả 2 máy (BA1, BA2) cùng làm việc song song thì cung cấp đủ công suất cho toàn bộ phụ tải điện của nhà máy với hệ số phụ tải. Stt 16389,71 kpt = = 0,65 2.S đm 2.12500 Khi một máy gặp sự cố thì máy kia được phép quá tải 40% so với công suất định mức của nó mỗi ngày 6 giờ và trong 5 ngày đêm liên tục. Mỗi lần quá tải MBA hao mòn cách điện tương đương với 6 tháng nó làm việc định mức. → Ta có : Spt = m × Sđm Trong đó: m : bội số quá tải = 1.4 Spt = 1.4 . Sđm = 1,4 . 12500 = 17500 (kVA) Khi một máy gặp sự cố thì độ tin cậy cung cấp điện cho công ty : 17500 .100% 106,7% 16389 ,71 Như vậy máy còn lại đảm bảo độ tin cậy cung cấp điện 100% ngay cả sự cố 1 máy. Tính tổn thất công suất của máy biến áp. Tổn thất trong máy biến áp bao gồm tổn thất không tải (tổn thất sắt) và tổn thất đồng. Tổn thất công suất tác dụng và phản kháng trong máy biến áp được tính theo công thức sau (2.29, trang 20): 2 ’ ’ S pt ΔPT = ΔP0 + ΔPN (kW) ` (3.1) S đm 2 S pt ΔQk = ΔQ0 + ΔQN (kVAr) (3.2) S đm U %.S Q N đm (kVAr) N 100 (3.3) 43
  44. i %.S Q đm (kVAr) 0 100 (3.4) ’ ΔP0 = ΔP0 + kkt ΔQ0 (kW) (3.5) ’ ΔPN = ΔPN + kkt ΔQN (kW) (3.6) Nếu trạm có n MBA làm việc song song : 2 ’ 1 ’ S pt ΔP2T = nΔP0 + ΔPN (kW) (3.7) n S đm Trong đó: ’ ΔP0 : Tổn thất công suất tác dụng không tải của MBA khi kể đến thành phần công suất phản kháng (kW). ’ ΔPN : Tổn thất công suất tác dụng ngắn mạch của máy biến áp khi kể đến thành phần công suất phản kháng (kW). ΔQ0 : Tổn thất công suất phản kháng không tải của MBA (kVAr). ΔQN : Tổn thất công suất phản kháng ngắn mạch của MBA ( kVAr) Spt : Phụ tải toàn phần (kVA). Sđm : Dung lượng định mức của MBA (kVA). i% : Giá trị tương đối của dòng điện không tải, cho trong lý lịch máy. UN%: Giá trị tương đối của điện áp ngắn mạch cho trong lý lịch máy. kkt : Đương lượng kinh tế của công suất phản kháng (kW/kVAr) n : Số máy biến áp làm việc song song. +Tính tổn thất công suất của máy biến áp Các tổn thất ΔQ0 ,ΔQN được tính theo công thức sau: i %.Sđm 1.12500 Q 125(kVAr) 0 100 100 (theo công thức 3.4) U %.S 10,5.12500 Q N đm 1312 ,5(kVAr) N 100 100 (theo công thức 3.3) Trong đó: 44
  45. i% : Giá trị tương đối của dòng điện không tải, cho trong lý lịch máy. UN%: Giá trị tương đối của điện áp ngắn mạch cho trong lý lịch máy. ’ ΔP0 = ΔP0 + kkt ΔQ0 (kW) (theo công thức 3.5) = 15 + 0,05.125 = 21,25(kW) ’ ΔPN = ΔPN + kkt ΔQN (kW) (theo công thức 3.6) = 65 + 0,05.1312,5 = 130,62(kW) Tổn hao công suất khi cả 2 máy cùng làm việc song song: 2 ’ 1 ’ S pt ΔP2T = nΔP0 + ΔPN (kW) n S đm 2 1 16389,71 ΔP2T = 2.21,25 + .130,62 = 154,77(kW) 2 12500 Tổn thất điện năng trong MBA được xác định theo công thức sau: ’ ’ ΔA = n. ΔP0 .t + ΔPN . τ (kWh) (3.8) ΔA = 2.21,25.8760 + .130,62 .3411=755286,89 (kW) Trong đó: n : Số máy biến áp làm việc song song. t : Thời gian vận hành thực tế của máy biến áp. Bình thường MBA được đóng điện suốt một năm nên lấy : t = 8760 (h) τ : Thời gian tổm thất công suất lớn nhất được tính như sau: -4 2 τ = ( 0.124 + TMax . 10 ) . 8760 TMax : Thời gian sử dụng công suất lớn nhất tra (PLI.4, trang 254) sách “Thiết kế cấp điện” ta có : TMax = 5000h Thay số ta có : τ = (0.124 + 5000.10-4)2.8760 = 3411 (h) Vậy tổn hao điện năng là: ΔA = (kWh) 45
  46. Chi phí tính toán hàng năm của trạm biến áp được tính theo hàm chi phí sau: Z = ε . k + g . ΔA Trong đó: ε : Hệ số khấu hao cơ bản và thu hồi vốn đầu tư, ε = 0.2. k : Vốn đầu tư (1.109 đồng) g : Giá thành hao tổn cho 1kWh ( g = 2000 đồng/kWh ). Thay số ta có: Z = 0,2.1.109 + 2000.606767,91 = 1710573794 ( đồng ) *Xét chỉ tiêu kinh tế kỹ thuật của phương án 2: Nếu như phương án 1 ta chon 2 lộ cung cấp điện cho công ty môt đường lấy từ trạm An Lạc, một nguồn lấy từ trạm Đồng Hòa Kiến An nhưng trạm này lại ở rất xa công ty. Như vậy khi đi dây sẽ rất tốn kém và chi phí kim loại màu cũng sẽ tăng lên. Cả hai phương án này đều chọn máy biến áp từ 110/6,6/0,6- 0,4 cũng không nhằm ngoài việc tiết kiệm chi phí vì nếu đi từ 110/22/6/0,6- 0,4 thì sẽ phải xây dựng thêm 1 trạm biến áp trung gian nữa sẽ rất tốn kém. Theo phương án này ta chỉ dùng một máy biến áp trung gian lấy nguồn từ trạm An Lạc máy biến áp cấp điện cho 9 biến áp phân xưởng và chiếu sáng. Tính tổn thất công suất máy biến áp: Các tổn thất ΔQ0 ,ΔQN được tính theo công thức sau: i %.Sđm 0,7.20000 Q 140(kVAr) 0 100 100 (theo công thức 3.4) U %.S 10,5.20000 Q N đm 2100 (kVAr) N 100 100 (theo công thúc 3.3) Trong đó: i% : Giá trị tương đối của dòng điện không tải, cho trong lý lịch máy. UN%: Giá trị tương đối của điện áp ngắn mạch cho trong lý lịch máy. ’ ΔP0 = ΔP0 + kkt ΔQ0 (kW) (theo công thức 3.5) 46
  47. = 18,8 + 0,05.140 = 25,8(kW) ’ ΔPN = ΔPN + kkt ΔQN (kW) (theo công thức 3.6) = 93,6 + 0,05.2100 = 198,6(kW) Tổn hao công suất khi máy làm việc: 2 ’ ’ S pt ΔPT = ΔP0 + ΔPN (kW) S đm 2 16389,71 ΔPT = 25,8 + 198,6 = 159,17(kW) 20000 Tổn thất điện năng trong MBA được xác định theo công thức sau: ’ ’ ΔA = ΔP0 .t + ΔPN . τ (kWh) (3.8) 2 ΔA = 25,8.8760+ 198,6 16389,71 .3411=680936,883 (kW) 20000 Trong đó: n : Số máy biến áp làm việc song song. t : Thời gian vận hành thực tế của máy biến áp. Bình thường MBA được đóng điện suốt một năm nên lấy : t = 8760 (h) τ : Thời gian tổm thất công suất lớn nhất được tính như sau: -4 2 τ = ( 0.124 + TMax . 10 ) . 8760 TMax : Thời gian sử dụng công suất lớn nhất tra (PLI.4, trang 254) sách “Thiết kế cấp điện” ta có : TMax = 5000h Thay số ta có : τ = (0.124 + 5000.10-4)2.8760 = 3411 (h) Vậy tổn hao điện năng là: ΔA = (kWh) Chi phí tính toán hàng năm của trạm biến áp được tính theo hàm chi phí sau: Z = ε . k + g . ΔA Trong đó: ε : Hệ số khấu hao cơ bản và thu hồi vốn đầu tư, ε = 0.2. 47
  48. k : Vốn đầu tư (700.106 đồng) g : Giá thành hao tổn cho 1kWh ( g = 2000 đồng/kWh ). Thay số ta có: Z = 0,2.700.106 + 2000.680936,883 = 1501873766 ( đồng ) *So sánh chỉ tiêu kinh tế kỹ thuật của hai phương án qua bảng 3.5. Bảng 3.3: So sánh phương án 1 và phương án 2 Stt Đại lƣợng so sánh Phƣơng án 1 Phƣơng án 2 1 Vốn đẩu tư ban đầu (Đồng) 1.109 700.106 2 Hàm chi phí ( đồng ) 1710573794 1501873766 3 Độ tin cậy cung cấp điện khi bị sự cố (%) 100 100 4 Tổn thất điện (kWh) 154,77 159,17 Qua tính toán phần trên ta thấy phương án 2 khi dùng có khả năng đảm bảo cung cấp,đi dây dễ dàng, ít tốn kém kim loại màu, đầu tư ban đầu thấp hơn. Ngoài ra để đảm bảo độ tin cậy cung cấp điện khi mất điện, sự cố dùng thêm nguồn dự phòng với máy phát điện 300kW và một máy biến áp BA 6,6/0,4-300KVA cấp điện cho sủa chữa ( được bố trí ở sơ đồ cao áp). Vậy từ phần tính trên ta chọn phương án cấp điện cho nhà máy theo phương án 2. 48
  49. 3.1.3. Phƣơng án đi dây mạng cao áp của công ty Công ty thép Việt – Hàn là hộ tiêu thụ loại 1 cho nên để đảm bảo độ tin cậy trong cung cấp điện ta chọn phương án xây dựng trạm phân phối trung tâm Từ nguồn An Lạc qua 1 máy biến áp MBA 110/6,6kV- 15/20MVA tới phân xưởng sản suất chính và các nhà hành chính liên quan. Chọn máy biến áp theo : SđmBA ≥ SttN Căn cứ vào vị trí công suất phân xưởng ta đặt 9 biến áp bao gồm 8 biến áp cấp điện cho xưởng sản xuất chính và 1 biến áp cấp điện cho chiếu sáng toàn công ty: - Biến áp 1 cấp điện cho nhóm thiết bị 10, 11 – BA1 - Biến áp 2 cấp điện cho nhóm thiết bị 8, 9 – BA2 - Biến áp 3 cấp điện cho nhóm thiết bị 3 – BA3 - Biến áp 4 cấp điện cho nhóm thiết bị 1, 2 – BA4 - Biến áp 5 cấp điện cho nhóm thiết bị 4 – BA5 - Biến áp 6 cấp điện cho nhóm thiết bị 5 – BA6 - Biến áp 7 cấp điện cho nhóm thiết bị 6 – BA7 - Biến áp 8 cấp điện cho nhóm thiết bị 7 – BA8 - Biến áp 9 cấp điện cho chiếu sáng – BA9 49
  50. Bảng 3.4:Lựa chọn máy biến áp Tên MBA SđmBA,kVA Uc, kV UH , kV ΔP0,W ΔPN, W UN% BATG 20000 110 6,6 18800 93600 10,5 BA1 3150 6,6 0,6 6800 27000 7 BA2 4000 6,6 0,6 8000 32500 9 BA3 2000 6,6 0,6 2800 13200 6 BA4 2500 6,6 0,6 3400 15000 6 BA5 1600 6,6 0,6 2700 11000 6 BA6 500 6,6 0,6 1300 4300 4 BA7 1600 6,6 0,6 2700 11000 6 BA8 1600 6,6 0,6 2700 11000 6 BA9 400 6,6 0,6 1060 3600 4 Sơ đồ mạng cao áp như sau: 50
  51. Tr¹m An L¹c 110kV DS ES 121kV - 1200A 121kV - 1200A GCB 170kV - 1250A PBC 31,5kA 110kV - 10kA NDS 72kV PBC 300A Main transformer 110kV - 1200kA 110/6,6kV - 15/20MVA MV1 25kA 6,6kV Bus Bar system 7,2kV-2500A MV2 MV3 MV4 MV5 MV6 MV7 MV8 MV10 MV9 MV11 VCB VCB VCB VCB VCB VCB VCB VCB VCB VCB 7,2kV-600A 7,2kV-600A 7,2kV-600A 7,2kV-600A 7,2kV-600A 7,2kV-600A 7,2kV-600A 7,2kV-600A 7,2kV-600A 7,2kV-600A TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR9 TR8 TR10 6,6/0,6kV 6,6/0,6kV 6,6/0,6kV 6,6/0,6kV 6,6/0,6kV 6,6/0,4kV 6,6/0,4kV 6,6/0,4kV 6,6/0,4kV 6,6/0,4kV 3150kVA 4000kVA 2500kVA 2000kVA 1600kVA 500kVA 1600KVA 400kVA 1600kVA G 300kVA LV1 LV2 LV3 LV1 LV5 LV6 LV7 LV11 LV8 LV LV12 ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB CÊp ®iÖn söa ¸nh s¸ng ch÷a ATS Nguån dù phßng Hình 3.1: Sơ đồ mạng cao áp công ty. 51
  52. CHƢƠNG 4. CHỌN DÂY DẪN VÀ CÁC THIẾT BỊ BẢO VỆ 4.1. TÍNH CHỌN CÁP CAO ÁP VÀ HẠ ÁP 4.1.1. Cơ sở lý thuyết tính chọn cáp Dây dẫn và dây cáp trong mạng điện được lựa chọn theo các điều kiện sau đây: o Lựa chọn theo điều kiện phát nóng. o Lựa chọn theo điều kiện tổn thất điện cho phép. Ngoài hai điều kiện trên người ta còn lựa chọn theo kết cấu của dây dẫn và cáp như một sợi, nhiều sợi, vật liệu cách điện v.v 4.1.2. Các phƣơng pháp lƣa chọn cáp trong mạng điện *Lựa chọn theo điều kiện phát nóng. Khi có dòng điện chạy qua dây dẫn và cáp, vật dẫn bị nóng lên. Nếu nhiệt độ dây dẫn và cáp quá cao có thể làm cho chúng bị hư hỏng, hoặc giảm tuổi thọ. Mặt khác, độ bền cơ học của kim loại dẫn điện cũng bị giảm xuống. Do đó, nhà chế tạo quy định nhiệt độ cho phép với mỗi loại dây, dây cáp. Ví dụ: dây trần có nhiệt độ cho phép là 750C, dây bọc cao su có nhiệt độ cho phép là 550C Hãy xét trường hợp đơn giản nhất, đó là sự phát nóng của dây trần đồng nhất. Dây dẫn trần đồng nhất là dây có tiết diện không thay đổi theo chiều dài và làm bằng một vật liệu duy nhất. Khi không có dòng điện chạy trong dây dẫn thì nhiệt độ của nó bằng môi trường xung quanh. Khi có dòng điện đi qua, dây dẫn sẽ bị nóng lên. Một phần nhiệt lượng sẽ đốt nóng dây dẫn, phần nhiệt lượng còn lại sẽ tỏa ra môi trường xung quanh. 52
  53. Đối với mỗi loại dây, cáp nhà chế tạo cho trước giá trị dòng điện cho phép 0 Icp dòng Icp ứng với nhiệt độ tiêu chuẩn của môi trường là không khí, + 25 C, đất 150C. Nếu nhiệt độ môi trường nơi lắp đặt dây dẫn và cáp khác với nhiệt độ tiêu chuẩn nêu trên thì dòng điện cho phép phải được hiệu chỉnh: Icp(hiệu chỉnh) = k.Icp (4.1) Trong đó: Icp : Dòng điện cho phép của dây dẫn, cáp ứng với điều kiện nhiệt độ tiêu chuẩn của môi trường (A). k : Hệ số hiệu chỉnh, tra trong sổ tay. Vậy điều kiện phát nóng là : Ilv max ≤ Icp (4.2) Trong đó: Ilv max : Dòng điện làm việc lâu dài lớn nhất. Icp : Dòng điện cho phép (đã hiệu chỉnh) của dây dẫn. *Lựa chọn theo điều kiện tổn thất điện áp cho phép Tổn thất điện áp trên đường dây được tính theo công thức sau: PR QX ΔU = .V (4.3) U đm Trong đó: P,Q : Công suất tác dụng, phản kháng chạy trên đường dây (kW), (kWAr). R,X : Điện trở, điện kháng của đường dây (Ω). Uđm : Điện áp định mức của dây (kV). Để dễ so sánh người ta thường tính theo trị số phần trăm: Khi đường dây có nhiều phụ tải tập trung, tổn thất điện áp có thể tính: PR QX 100 ΔU = 2 . (4.4) U đm 1000 Tổn thất điện áp được tính theo công thức sau: 53
  54. n Pi ri Qi xi ΔU = i 1 .V (4.5) U đm Điều kiện ΔU < ΔUcp ; ΔUcp = 5%Uđm 4.1.3. Tính chọn cáp cao áp và hạ áp Để chọn tiết diện dây dẫn ta dựa vào bảng sau: Bảng 4.1: Tiêu chuẩn chọn cáp Đối tƣợng Jkt ΔUcp Icp U ≥ 110 kV X - - Mọi đối tượng U = 6,10,22,35 kV + Đô thị, xí nghiệp X - - + Nông thôn - X - U = 0.4 kV + Đô thị, xí nghiệp - - X + Nông thôn - X - Jkt : Mật độ kinh tế. X : Sử dụng phương pháp chọn tiết diện theo mật độ dòng kinh tế. - : Không sử dụng phương pháp chọn tiết diện theo mật độ dòng kinh tế Tra (PL1.4, trang 254) ta có thời gian sử dụng công suất lớn nhất Tmax, tra 2 bảng sau sẽ có Jkt = 1,1 A/mm . Bảng 4.2: Mật độ dòng kinh tế theo Tmax. Loại dây dẫn Tmax ≤ 3000h Tmax = 3000 – 5000h Tmax ≥ 5000h A và AC 1.3 1.1 1 Cáp lõi đồng 3.5 3.1 2.7 Cáp lõi nhôm 1.6 1.4 1.2 *Tính chọn mạng cao áp : Chọn tiết diện dây dẫn theo công thức sau: 54
  55. Fkt = IttNM/ Jkt Kiểm tra dây đã chọn theo điều kiện dòng sự cố khi đứt một dây, dây còn lại tải toàn bộ công suất. Isc = 2IttNM < Icp Icp : Dòng điện cho phép Với cáp thì phải kiểm tra điều kiện nhiệt dòng ngắn mạch F ≥ α . IN tqđ α : Hệ số nhiệt độ α = 6 với dây đồng, α = 11 với dây nhôm. tqđ : Thời gian quy đổi lấy bằng thời gian ngắn mạch. *Tính chọn cáp mạng hạ áp: Dây hạ áp được chọn theo điều kiện phát nóng: Khc . Icp ≥ Itt Trong đó: Itt : Dòng điện tính toán. Icp: Dòng điện cho phép của cáp. Khc: Hệ số hiệu chỉnh theo nhiệt độ môi trường đặt cáp và số lượng cáp đặt song song. Vì ta đi dây đơn và nhiệt độ nơi sản xuất và nơi sử dụng cáp không chênh lệch là bao nên ta lấy Khc = k1.k2 =1. 4.1.3.1. Tính chọn cáp mạng cao áp Tra sổ tay ta có Tmax = 5000h, đường dây trên không ta chọn dây AC vậy Jkt = 1,1. Vì đi lộ đơn ta có dòng tính toán của nhà máy là: IttCT = 53,76 (A) I 53,76 F = ttCT = = 48,87 (mm2) J kt 1,1 Có chiều dài cáp từ trạm An Lạc đến là: l = 220m chọn dây AC-50 khoảng cách trung bình hình học 4 m tra bảng thông số dây AC ta có: 55
  56. r0 = 0,65 Ω/km x0 = 0,435 Ω/km Kiểm tra dây dẫn đã chọn theo điều kiện tổn thất điện áp. PR QX 7305 ,55.0,65.0,22 7180 ,51.0,435 .0,22 U 1731,8V U đm 110 ΔU = 1731,8V < ΔUcp = 10% .Uđm = 10% . 110000 = 11000V Vậy ta chọn AC-50 là hợp lý. 4.1.3.2. Tính chọn cáp mạng hạ áp. Đối với một số các thiết bị, động cơ có công suất lớn ta trực tiếp cấp điện tù các máy biến áp phân xưởng mà không đưa qua tủ phân phối. Còn đối với các động cơ công suất nhỏ thì ta vẫn qua tủ và việc lựa chọn các thiết bị bảo vệ tính như bình thường. *Vì khoảng cách của trạm biến áp trung gian tới các máy biến áp rất nhỏ gần như là sát thanh cái 6,6kV do vậy ta không tính tới cáp mà chọn thanh cái có tiết diện phù hợp. *Tương tự đối với khoảng cách từ thanh cái 6,6kV tới các máy biến áp cũng rất nhỏ do vậy ta không cần chọn cáp loại này. * Chọn cáp từ máy biến áp về tủ phân phối của xưởng và các thiết bị: Khc . Icp ≥ Itt (Khc = 1 vì đi dây đơn và nhiệt độ nơi sản xuất và nhiệt độ môi trường không chênh lệch) S đm Itt = U. 3 - Chọn cáp từ máy biến áp 1 tới nhóm thiết bị 10,11( 2 giá cán cuộn) Itt = 532,56A 2 Chọn 2 cáp 3 pha của hãng LENS có kí hiệu cáp 3G95mm có Icp = 301A Các cáp từ các máy biến áp khác tới các tủ động lực hoặc các động cơ được tính toán và ghi lại trong bảng sau: 56
  57. Bảng 4.3: Bảng chọn cáp Chiều dài r0 x0 Đƣờng cáp Loại (m) (Ω/km) (Ω/km) Trạm An Lạc - BATG AC-50 220 0,65 0,435 BA1 – nhóm 10,11 3G300 10 0,0601 0,385 BA2 – nhóm 8,9 3G240 10 0,0754 0,392 BA3 – nhóm 3 3G185 10 0,0991 0,40 BA4 – nhóm 1,2 3G185 10 0,0991 0,40 BA6 – tủ động lực 2 3G95 20 0,193 0,419 BA5 – tủ động lực 1 3G150 20 0,124 0,406 BA7 – tủ động lực 3 3G185 20 0,0991 0,40 BA8 – tủ động lực 4 3G185 20 0,0991 0,40 BA9 – Tủ chiếu sáng 3G150 20 0,124 0,406 4.1.4. Lựa chọn sơ đồ trạm phân phối trung tâm, trạm biến áp trung gian và các trạm biến áp phân xƣởng. Do tính chất của công ty nên ta dung 1 trạm phân phối lấy nguồn từ trạm An Lạc. Chọn dùng máy cắt 110kV do Schneider chế tạo có các thông số sau: Bảng 4.4 : Thông số máy cắt 110kV Điện áp chịu Icắt N. Icắt Điện áp chịu đựng tần số Loại Uđm Iđm đựng xung 3s Nmax công nghiệp máy cắt (kV) (A) sét (kA) (kA) (kV) (kV) SB6 123 2000 100 40 230 550 Phía hạ áp máy BATG 57
  58. Bảng 4.5: Thông số máy cắt 6,6 kV Loại Uđm Iđm Icắt N. Icắt Điện áp chịu đựng tần số Điện áp chịu máy cắt (kV) (A) 3s Nmax công nghiệp đựng xung (kA) (kA) (kV) sét (kV) 3AF 7,2 1250 31,5 80 20 60 105 - 4 Chọn dao cách ly do Liên Xô cũ chế tạo: Bảng 4.6: Thông số kĩ thuật của dao cách ly Loại dao Uđm(kV) Iđm (A) INmax (kA) IN10s (kA) PЛHД-110/60 110 600 80 12 * Bố trí các thiết bị và trạm biến áp phân xưởng Vì các biến áp nằm gần trạm phân phối trung tâm, phía cao áp đặ cầu chì và máy cắt phụ tải. Phía ha áp đối với các động cơ không nằm trong tủ thí ta chọn dùng câc máy cát phụ tải riêng cho từng động cơ này, đối với các tủ phân phối thì ta dùng cầu chì các aptomat nhánh. Mỗi máy biến áp đặt một aptomat tổng Các trạm biến áp cửa phân xưởng sản xuất đặt thêm aptomat liên lạc giữa hai phân đoạn. Cụ thể như sau: Đặt một tủ đầu vào 6,6 kV có máy cắt phụ tải và cầu chì ống thông số kĩ thuật 58
  59. Bảng 4.7: Máy cắt phụ tải 6,6kV Điện áp chịu Điện áp chịu ICắt Icắt Loại Uđm Iđm đựng tần số công đựng xung N, 3s Nmax MC (kV) (A) nghiệp sét (kA) (kA) (kV) (kV) 3AF 105 7,2 630 31.5 80 20 60 - 4 - Chọn aptomat cho phân xưởng Phía hạ áp chọn dùng các aptomat của hãng Merlin Gerlin dặt trong tủ tự tạo. Dòng lớn nhất qua aptomat tổng của máy biến áp BA1-3150kVA là: S đmBA 3150 Imax = = 3031,08 (A) U. 3 0,6. 3 Đối với các aptomat còn lại dòng qua aptomat được ghi vào bảng sau: Bảng 4.8: Aptomat tổng SđmBA 3150 4000 2000 2500 1600 500 1600 1600 400 (kVA) Imax (A) 3031,08 3849 1924,5 2405,62 2309,4 721,68 2309,4 2309,4 577,35 - Chọn cầu chì cho tủ động lực 1 Chọn kmm = 5; α = 2,5 Trong đó : Cosυ – Hệ số công suất định mức của động cơ, nhà chế tạo cho. Thường bằng 0,8. kmm – Hệ số mở máy của động cơ, nhà chế tạo cho. Thường bằng 5,6,7. α – Hệ số lấy như sau: Với động cơ mở máy nhẹ hoặc mở máy không tải thì lấy bằng 2,5. Với động cơ mở máy nặng hoặc mở máy có tải thì lấy bằng 1,6. 59
  60. Uđm – Điện áp định mức lưới hạ áp. η – Hiệu suất của động cơ lấy bằng 1. - Cầu chì bảo vệ máy cắt : PđmdĐ 140 Iđc ≥ Iđm = = 252,59(A) U đm .cos . . 3 0,4.0,8.1. 3 I mm kmm.I đm 5.252,59 Và: Idc ≥ 505,18(A) 2,5 Tra bảng (phụ lục IV, trang 288) sách “Thiết kế cấp điện” ta chọn: - Loại cầu chì điện áp thấp kiểu ống IIP-2 do Liên xô chế tạo: Idc =600A Ivỏ = 1000A - Cầu chì bảo vệ 01 máy cắt 75kW: PđmdĐ 75 Idc ≥ Iđm = = 135,3(A) U đm .cos . . 3 0,4.0,8.1. 3 I mm kmm.I đm 5.135 ,3 Và: Idc ≥ 270 ,73(A) 2,5 Tra bảng (phụ lục IV, trang 288) sách “Thiết kế cấp điện” ta chọn: - Loại cầu chì điện áp thấp kiểu ống IIP-2 do Liên xô chế tạo: Idc= 300A Ivỏ = 350A * Tính toán chọn bộ cầu dao – cầu chì cho nhóm 1 Idc ≥ IttN = 313,63A I mm I ttN k sd .I đmĐ 252 ,59.5 313,63 0,7.252 ,59 Idc ≥ 559,90A 2,5 Chọn bộ cầu dao – cầu chì có: - Idc = 600A, Ivỏ = 1000 A chọn cầu dao có IđmCD = IvỏCC = 1000A Đối với các nhóm phụ tải còn lại tính toán và được ghi vào bảng *Lựa chọn dây dẫn từ tủ động lực tới các động cơ - Tính toán chọn dây cho nhóm 1: 60
  61. Tất cả các dây dẫn trong xưởng chọn loại dây cáp đồng hạ áp 3 lõi cách điện PVC do LENS chế tạo: Chọn k1 – Hệ số hiệu chỉnh nhiệt độ, ứng với môi trường đặt dây, cáp. k2 – Hệ số hiệu chỉnh nhiệt độ, kể đến số lượng dây hoặc cáp đi chung một rãnh. Icp – Dòng điện lâu dài cho phép ứng với tiết diện dây hoặc cáp định lựa chọn Vì vậy chọn dây từ tủ động lực 1 tới các thiết bị nhóm 4 Với máy cắt P = 140kW , Iđm = 252,59A là dây cáp 3 lõi PVC(3x95) có Icp = 301A Thử lại với điều kiện: k1.k2.Icp= 301A > Iđm = 252,59 A I dc 600 Kết hợp với điều kiện: k1.k2.Icp > = 200A 3 Chú ý: + Không cần kiểm tra theo điều kiện ΔUcp vì đường dây ngắn. + Không cần kiểm tra theo điều kiện ổn định nhiệt dòng ngắn mạch vì ngắn mạch cực động cơ là ngắn mạch xa nguồn, dòng ngắn mạch nhỏ. Tương tự chọn với các thiết bị còn lại trong nhóm và các nhóm động cơ còn lại các kết quả được ghi vào bảng 61
  62. Bảng 4.9: Lựa chọn cầu chì và dây dẫn Phụ tải Dây dẫn Cầu chì Tên máy Pu Mã Tiết diện Mã Iv/Idc Iu, A ,kW hiệu (mm2) hiệu (A) 5 1 2 3 4 6 7 Nhóm 4 Máy cắt 140 252,59 LENS 3G95 IIP-2 1000/600 Máy cắt 75 135,31 LENS 3G35 IIP-2 350/300 Con lăn kẹp kéo 15 27,06x5 LENS 3G2,5 IIP-2 100/60 Con lăn kẹp kéo 22 39,69 LENS 3G4 IIP-2 100/80 Con lăn kẹp kéo 50 90,21 LENS 3G16 IIP-2 350/200 Động cơ tạo cuộn 100 180,42 LENS 3G50 IIP-2 600/430 Sàn nguội 110 198,46 LENS 3G70 IIP-2 600/500 Máy cắt 140 252,59 LENS 3G95 IIP-2 1000/600 Máy cắt sự cố 45 81,18 LENS 3G16 IIP-2 200/160 Máy cắt phân 7,5x2 14,24 LENS 3G1,5 IIP-2 60/34 đoạn 62
  63. 1 2 3 4 5 6 7 Nhóm 5 Quạt gió 15 27,06x4 LENS 3G2,5 IIP-2 100/60 Động cơ truyền con 5,5 10,44x6 LENS 3G1,5 IIP-2 60/25 lăn Động cơ con lăn so 2,2 4,17x2 LENS 3G1,5 IIP-2 15/10 đầu Động cơ vó 7,5 14,24 LENS 3G1,5 IIP-2 60/34 Động cơ vó 3,7 7,02 LENS 3G1,5 IIP-2 60/15 Động cơ vó 15 27,06x2 LENS 3G2.5 IIP-2 100/60 Cưa 15 27,06x3 LENS 3G2,5 IIP-2 100/60 Nhóm 6 Máy cắt 37 70,26 LENS 3G10 IIP-2 200/160 Quạt gió 132 238,15 LENS 3G70 IIP-2 1000/600 Động cơ làm mát 110 198,46x3 LENS 3G70 IIP-2 600/500 Động cơ bàn con lăn 0,55 1,04x6 LENS 3G1,5 IIP-2 15/10 Động cơ tháp nước 22 39,69x2 3G4 100/80 63
  64. Nhóm 7 Động cơ bơm nước 75 135,31x2 LENS 3G35 IIP-2 350/300 Động cơ bơm nước 55 99,23x2 LENS 3G16 IIP-2 350/200 Động cơ máy nén khí 150 270,63x3 LENS 3G95 IIP-2 1000/600 Động cơ bàn nạp phôi 7,5 14,24 LENS 3G1,5 IIP-2 60/34 Động cơ bàn nhận 3,7 7,02 LENS 3G1,5 IIP-2 60/15 phôi Động cơ bơm mỡ cán 0,37 0,7 LENS 3G1,5 IIP-2 15/10 thô Động cơ bơm mỡ cán 0,75 1,42 LENS 3G1,5 IIP-2 15/10 trung Động cơ bơm mỡ cán 0,85 1,61 LENS 3G1,5 IIP-2 15/10 tinh Động cơ bơm mỡ cán 0,85 1,61 LENS 3G1,5 IIP-2 15/10 block 64
  65. 1 2 3 4 5 6 7 Động cơ bơm dầu cán 22 39,69 LENS 3G4 IIP-2 100/80 thô Động cơ bơm dầu cán 25 47,47 LENS 3G6 IIP-2 200/100 trung Động cơ bơm dầu cán 25 47,47 LENS 3G6 IIP-2 200/100 tinh Động cơ bơm dầu cán 30 56,97 LENS 3G10 IIP-2 200/125 block Động cơ bơm dầu bó 30 56,97 LENS 3G10 IIP-2 200/125 cuộn Động cơ bơm dầu bó 22 39,69 LENS 3G4 IIP-2 100/80 thanh 65
  66. 4.2. TÍNH NGẮN MẠCH CHO HỆ THỐNG ĐIỆN 4.2.1. Mục đích của việc tính ngắn mạch Ngắn mạch là hiện tượng mạch điện bị nối tắt lại qua một tổng trở có điện trở xấp xỉ bằng 0. Khi xảy ra ngắn mạch thì trong mạch điện sẽ phát sinh ra quá trình quá độ dẫn đến sự thay đổi đột ngột của dòng điện và điện áp. Dòng điện tăng lên tới một giá trị rất lớn có thể hàng chục tới hàng trăm kA. Sau đó lại giảm đến giá trị xác lập còn điện áp giảm xuống điện áp ngắn mạch rồi xuống điện áp ổn định. Vì vậy, ngắn mạch là một sự cố nguy hiểm vì dòng ngắn mạch lớn sẽ gây phát nóng cục bộ các phần mà dòng ngắn mạch đi qua, làm hỏng các thiết bị điện, gây lực điện động phá vỡ cuộn dây, sứ cách điện, biến dạng khí cụ. Khi ngắn mạch điện áp tụt xuống động cơ ngừng quay làm hỏng sản phẩm, gây mất điện cho hệ thống. Vậy mục đích ta phải tính ngắn mạch cho hệ thống điện để:  Lựa chọn thiết bị điện.  Tính toán thiết kế bảo vệ rơ le.  Tìm các biện pháp hạn chế dòng ngắn mạch. Các dạng ngắn mạch thường xảy ra trong hệ thống cung cấp điện là: Ngắn mạch ba pha. Ngắn mạch hai pha. Ngắn mạch một pha chạm đất. Ngắn mạch hai pha chạm đất. Trong đó ngắn mạch ba pha là nghiêm trong nhất. Vì vậy thường người ta căn cứ vào dòng điện ba pha để lựa chọn các thiết bị điện. 4.2.2. Tính toán ngắn mạch cho hệ thống cung cấp điện 4.2.2.1. Tính toán ngắn mạch phía cao áp 66
  67. N1 N2 MC Cáp ngầm TBAKV TPPTT TBATG N 1 N 2 XHT ZC2 ZC1 HT Hình 4.1: Sơ đồ thay thế tính ngắn mạch mạng cao áp. Cần tính điểm ngắn mạch N1 tại thanh cái trạm phân phối trung tâm (PPTT) để kiểm tra máy cắt, thanh góp và tính điểm ngắn mạch N2 tại phía cao áp trạm biến áp trung gian (BATG) để kiểm tra cáp, máy cắt, tủ cao áp của máy biến áp trung gian (MBATG). Từ sơ đồ thay thế ta có 2 2 U tb 110 XH = 3 0,605 (Ω) S N 20.10 Đường dây từ trạm khu vực BAKV đến trạm phân phối trung tâm PPTT là dâu AC-50 nên có : R = r0 . l/n X = x0 . l/n Lộ từ trạm An Lạc đến : l = 0,22 km 67
  68. Bảng 4.10: Tổng trở dây dẫn Đƣờng cáp Loại Chiều r0 x0 R X dài (Ω/km) (Ω/km) (Ω) (Ω) (m) Trạm An Lạc - BATG AC-50 220 0,65 0,435 0,143 0,0957 BA1 – nhóm 10,11 3G300 10 0,0601 0,385 0,000601 0,00385 BA2 – nhóm 8,9 3G240 10 0,0754 0,392 0,000754 0,00392 BA3 – nhóm 3 3G185 10 0,0991 0,40 0,000991 0,004 BA4 – nhóm 1,2 3G185 10 0,0991 0,40 0,000991 0,004 BA5 – tủ động lực 1 3G95 20 0,193 0,419 0,00386 0,00838 BA6 – tủ động lực 2 3G150 20 0,124 0,406 0,00124 0,00812 BA7 – tủ động lực 3 3G185 20 0,0991 0,40 0,00198 0,008 BA8 – tủ động lực 4 3G185 20 0,0991 0,40 0,00198 0,008 BA9 – Tủ chiếu sáng 3G150 30 0,124 0,406 0,00372 0,0121 R = 0,65 . 0,22 = 0,143 Ω X = 0,435 . 0,22 = 0,0957 Ω Tổng trở : Z = R + jX = 0,143 + j.0,0957 Vậy dòng điện ngắn mạch tại N1 là: U tb 110 IN1 = 88,8(kA) 2 2 Z1. 3 3. 0,143 0,0957 0,605 ixlN1 = 1,8. 2 . IN1 = 2 . 1,8 . 88,8 = 226 (kA) 4.2.2.2. Tính toán ngắn mạch phía hạ áp Ta có thể coi máy biến áp trung gian là nguồn vì nó được nối với hệ thống có công suất vô cùng lớn vì vậy điện áp phía hạ áp không đổi khi xảy ra ngắn mạch. * Tính toán ngắn mạch tại N2: 68
  69. Dòng nhắn mạch tại N2: U tb 110 IN2 = 88,32(kA) 2 2 Z1. 3 3. 0,143 0,000601 0,00385 0,0957 0,605 Trị số dòng ngắn mạch xung kích: ixk = 1,8. 2 . IN2 = 1,8 . . 88,32 = 224,82 (kA) Các dòng nhắn mạch tại các thanh cái được ghi vào bảng sau: Bảng 4.11: Các giá trị dòng ngắn mạch Các giá trị dòng ngắn mạch Stt Các điểm ngắn mạch IN (kA) ixk (kA) 1 Điểm N1 88,8 226 2 Điểm N2 88,32 224,82 3 Điểm N3 87,83 223,59 4 Điểm N4 87,33 222,33 5 Điểm N5 86,84 221,07 6 Điểm N6 85,79 218,39 7 Điểm N7 84,85 216 8 Điểm N8 83,92 213,65 9 Điểm N9 83,02 211,35 10 Điểm N10 81,68 207,92 4.3. TÍNH CHỌN VÀ KIỂM TRA CÁC THIẾT BỊ CAO ÁP VÀ HẠ ÁP 4.3.1. Tính chọn và kiểm tra máy cắt. Tính chọn và kiểm tra máy cắt theo điều kiện sau: Bảng 4.12: Điều kiện chọn và kiểm tra máy cắt Đại lƣợng chọn và kiểm tra Điều kiện Điện áp định mức, kV UđmMC ≥ UđmLĐ Dòng điện định mức, A IđmMC ≥ Icb Dòng điện cắt định mức, kA ICđm ≥ IN 69
  70. Dòng điện ổn định động, kA Iđ.đm ≥ ixk Công suất cắt định mức Sđm cắt ≥ SN *Kiểm tra máy cắt phía cao áp: Bảng 4.13: Kiểm tra máy cắt Kết quả Stt Đại lƣợng chọn và kiểm tra Định mức chọn Tính toán 1 Điện áp định mức (kV) 123 110 2 Dòng điện định mức (A) 2000 53,57 3 Dòng điện cắt định mức (kA) 40 20 4 Dòng điện ổn định động (kA) 100 88,8 5 Công suất cắt định mức 80 20 *Kiểm tra máy cắt phía cao áp máy biến áp trung gian (MBATG) : Chọn dùng máy cắt 110kV do Schneider chế tạo lại SB6 Bảng 4.14: Kiểm tra máy cắt Kết quả Stt Đại lƣợng chọn và kiểm tra Định mức chọn Tính toán 1 Điện áp định mức (kV) 123 110 2 Dòng điện định mức (A) 2000 69,28 3 Dòng điện cắt định mức (kA) 40 19,2 4 Dòng điện ổn định động (kA) 100 48,38 5 Công suất cắt định mức (MVA) 80 12 *Kiểm tra máy cắt phía hạ áp : 70
  71. Bảng 4.15: Kiểm tra máy cắt Kết quả Stt Đại lƣợng chọn và kiểm tra Định mức chọn Tính toán 1 Điện áp định mức (kV) 7,2 6,6 2 Dòng điện định mức (A) 1250 450 3 Dòng điện cắt định mức (kA) 40 23 4 Dòng điện ổn định động (kA) 100 48 5 Công suất cắt định mức (MVA) 80 40 4.3.2. Tính chọn và kiểm tra dao cách ly Lựa chọn và kiểm tra dao cách ly theo điều kiện sau: Bảng 4.16: Điều kiện chọn và kiểm tra dao cách ly Đại lƣợng chọn và kiểm tra Điều kiện Điện áp định mức, kV UđmMC ≥ UđmLĐ Dòng điện định mức, A IđmMC ≥ Icb Dòng điện cắt định mức, kA ICđm ≥ IN Dòng điện ổn định động, kA Iđ.đm ≥ ixk Dòng điện ổn định tqd Inh.đm ≥ I∞ . tdm.nh Bảng 4.17: Kiểm tra dao cách ly Kết quả Stt Đại lƣợng chọn và kiểm tra Định mức chọn Tính toán 1 Điện áp định mức (kV) 110 110 2 Dòng điện định mức (A) 600 62,37 3 Dòng điện cắt định mức (kA) 80 30 4 Dòng điện ổn định động (kA) 12 6 71
  72. 4.3.3. Kiểm tra cáp đã chọn Với cáp chỉ cần kiểm tra với tuyến có dòng ngắn mạch là lớn nhất. Tiết diện ổn định nhiệt của cáp: 2 F ≥ α . I∞ . tqd = 11 . 88,8. 0,001 = 30,88(mm ) Vậy chọn dây AC-50 là hợp lý 4.3.4. Tính chọn và kiểm tra thanh dẫn Thanh dẫn được chọn lựa theo điều kiện phát nóng Bảng 4.18: Điều kiện chọn và kiểm tra thanh dẫn Đại lƣợng chọn và kiểm tra Điều kiện Dòng phát nóng lâu dài cho phép, A k1. k2. k3. Icp ≥ Icb 2 Khả năng ổn định động, kG/cm σcp ≥ σtt Khả năng ổn định nhiệt. mm2 Inh.đm ≥ α. I∞. tqd Icp = k1. k2. k3. Icpth Trong đó: Icp : Dòng điện cho phép của thanh dẫn. 0 Icpth : Dòng điện cho phép của 1 thanh dẫn khi nhiệt độ thanh dẫn là 70 C nhiệt độ môi trường xung quanh là 250C. k1 = 1 : Hệ số hiệu chỉnh đặt thanh dẫn thẳng đứng. k2 = 1 : Hệ số hiệu chỉnh khi xét trường có nhiều thanh ghép lại. k3 = 1 : Hệ số hiệu chỉnh theo nhiệt độ môi trường xung quanh khắc nhiệt độ 0 0 tiêu chuẩn, t mt = 45 C. Kiểm tra độ bền động của thanh cái. Điều kiện: σtt ≥ σcp Trong đó: σtt : Ứng suất tính toán của thanh cái, xuất hiện trong thanh góp do tác động của lực điện động dòng ngắn mạch. 72
  73. σcp : Ứng suất cho phép của thanh cái. 2 Với thanh góp nhôm σcp = 700kG/cm 2 Với thanh góp đồng σcp = 1400kG/cm Trình tư tính toán σtt : Lực tính toán Ftt do tác dụng của dòng ngắn mạch gây trên 1cm: -2 l Ftt = 1.76.10 . . ixk (kG) a -2 3,2 Ftt = 1.76.10 . . 226 = 10,6(kG) 1,2 Trong đó: Ixk : Dòng điện xung kích khi ngắn mạch 3 pha, kA. a : Khoảng cách giữa các pha, cm. Xác định mô men uốn M: l M = Ftt . (kGcm) 10 l 320 M = Ftt . = 10,6 . = 339,2 (kG.cm) 10 10 Mặt khác: 0,6.32 W = = 0,90 (cm3) 6 Khi đó ứng xuất tính toán thanh dẫn là: M 339,2 2 σtt = = = 376,88 (kG/cm ) W 0,9 2 2 σtt = 376,88 kG/cm < σcp = 1400 kG/cm + Kiểm tra theo điều kiện ổn định nhiệt. + Kiểm tra thanh dẫn theo điều kiện ổn định động dòng ngắn mạch. Thanh dẫn đặt trên sứ, khoảng cách giữa các sứ là l = 320cm khoảng cách giữa các pha là a = 120cm. + Chọn thanh dẫn 73
  74. Dòng điện lớn nhất qua thanh góp khi máy biến áp quá tải 30%: 20000 Itt = 1,3 . = 136,46 (A) 3.110 Vậy ta chọn thanh dẫn bằng đồng hình chữ nhật có tiết diện 90mm2 và kích thước là 30x3 có dòng cho phép là 405 (A) Thanh dẫn đặt nằm ngang k1 = 0,95 mỗi pha có một thanh dẫn k2 = 1 Nhiệt độ môi trường cực đại là 450C tCPTD tmax k3 = tCPTD t0 tmax : Nhiệt độ môi trường cực đại. tCPTD : Nhiệt độ thanh dẫn cho phép. 0 t0 = 30 C 0 tCPTD = 70 C 70 45 k3 = 0,8 70 30 Dòng điện cho phép hiệu chỉnh của thanh: IHCCP = 0,95 . 1 . 0,8 . 405 = 342 A ICP = 136,46A > Itt = 342A Kiểm tra thanh dẫn theo ổn định nhiệt ngắn mạch FCP ≥ a. I∞ tqd tqd : Thời gian chiu đựng của thanh dẫn = 0,5s. a : Khoảng cách giữa các thanh dẫn a = 120cm = 1,2 m. FCP ≥ 1,2 . 88,8 . 0,5 = 75,34 mm Từ trên ta thấy thanh dẫn đã chọn thỏa mãn các điều kiện. 4.3.5. Tính chọn và kiểm tra sứ Sứ có tác dụng vùa làm giá đỡ bộ phận mang điện vừa làm vật cách điện giữa các bộ phận đó với đất. Do vậy sứ phải có độ bền chịu được lực điện động do dòng điện ngắn mạch gây ra, chịu được điện áp của mạng. 74
  75. Các điều kiện chọn và kiểm tra sứ như sau: Bảng 4.19: Điều kiện chọn và kiểm tra sứ. Stt Đại lƣợng chọn và kiểm tra Kí hiệu Công thức chọn và kiểm tra 1 Điện áp định mức Uđm.sứ Uđm.sứ ≥ Uđm mang 2 Dòng điện định mức đối với Iđm.sứ Iđm.sư ≥ Ilv.max sứ 3 Lực cho phép tác động lên Fcp Fcp ≥ k.Ftt đầu sứ 4 Dòng ổn định nhiệt cho phép Iôdn Iôdn ≥ I∞ Trong đó: Fcp : Lực cho phép tác động lên đầu sứ (kG). Ftt : Lực tính toán đầu sứ (kG). Ta có: ' ' ’ H H F tt = Ftt . ; K = H H -2 l Ftt = 1,76.10 . ixk . a l : Là khoảng cách 2 sứ liên tiếp trên 1 pha (100cm). a : Là khoảng cách giữa 2 pha (=40cm) -2 100 Ftt = 1,76 . 10 .226. = 9,9 (kG) 40 Bảng 4.20: Thông số của sứ OФ – 123 - 375 Loại sứ Uđm (kV) Phụ tải phá hoại (kG) Khối lƣợng (kg) OФ – 123 - 375 110 375 7,1 4.3.6. Chọn và kiểm tra chống sét van Chống sét van dùng để chống sét đánh từ ngoài đường dây trên không truyền vào trạm biến áp, trạm phân phối. Chống sét van được chọn theo điều kiện sau: 75
  76. Điện áp định mức: Uđm ≥ Uđm mang Phía hạ áp ta chọn chống sét hạ thế Uđm ≥ Uđm mang ha ap* Theo điều kiện trên ta chọn chống sét van của Liên Xô cũ chế tạo có thông số sau: Bảng 4.21: Thông số chống sét van Loại Uđm (kV) Umax (kV) Uđ,thủng Uđ.thủng.xk(kV) Khối (kV) Khi t=2-10s lƣợng f = 50Hz ( kg) PBC-110 110 126 200 285 212 4.3.7. Tính chọn và kiểm tra biến dòng và biến áp đo lƣờng 4.3.7.1. Tính chọn và kiểm tra biến dòng đo lƣờng. Máy biến dòng có nhiệm vụ biến đổi dòng điện sơ cấp có trị số bất kì xuống 5A (đôi khi 1A và 10A) nhằm cấp nguồn dòng cho các dụng cụ đo lường, bảo vệ rơ le, tự động hóa Riêng biến dòng hạ áp chỉ cấp nguồn cho đo đếm. Biến dòng được gọi là TI hoặc BI. Máy biến dòng được chọn theo cấp điện áp, dòng điện phụ tải phía thứ cấp, cấp chính xác, kiểu loại Nó được kiểm tra theo các điều kiện ổn định lực điện động và ổn định nhiệt khi có dòng ngắn mạch chạy qua cụ thể như sau: 1. Sơ đồ nối dây và kiểu máy. 2. Điện áp định mức: Uđm.BI ≥ Uđm.lưới. 3. Dòn điện định mức: Iđm.BI ≥ Ilvmax. 4. Cấp chính xác. 5. Phụ tải thứ cấp: Zđm.BI ≥ Z2 = Zdc + Zdd Zdc : Tổng trở phụ tải của các dụng cụ đo. Zdd : Tổng trở dây dẫn đến các dụng cụ đo. 76
  77. Theo phụ tải định mức phía thứ cấp S2đmBI ≥ S2tt. S2tt : Phụ tải tính toán ở cuộn dây thứ cấp của máy biến dòng trong điều kiện làm việc bình thường. 2 S2đmBI = I 2đm. Z2đm 6. Ổn định động: 2 Kđ. Iđm1 ≥ ixk Kđ : Bội số ổn định động của BI. Iđm1 : Dòng điện sơ cấp của BI. 7. Ổn định nhiệt: 2 (Iđm1. Knh.đm) tnh.đm ≥ BN Knh.đm : Bội số ổn định nhiệt định mức của BI. Inh.đm : Thời gian ổn định nhiệt định mức của BI. * Chọn biến dòng cao áp 110kV: Chọn biến áp do Liên Xô cũ chê tạo có các mthoong số sau: Bảng 4.22: Thông số máy biến dòng 110kV Iđm sơ cấp Cấp chính Khối lƣợng Loại Uđm (kV) ( A) xác 0,5 (kg) TPH-110Y1 110 2000 40 950 *Chọn biến dòng hạ áp 6,6kV: Ta chọn biến dòng do công ty thiết bị đo điện chế tạo có các thông số sau: Bảng 4.23: Thông số máy biến dòng 6,6kV Loại Uđm Dòng sơ Dòng thứ Dung Cấp Dòng ổn Dòng ổn (kV) cấp (A) cấp(A) lƣợng chính xác đinh động định nhiệt (VA) (kA) (kA) CT 6,6 5000 5 30 0,5 400 1 4.3.7.2. Tính chọn và kiểm tra biến áp đo lƣờng. 77
  78. Máy biến áp đo lường hay máy biến điện áp, kí hiệu là BU hoặc TU dùng để biến đổi điện áp sơ cấp bất kỳ xuống 100V hoặc 100/ 3 V, cấp nguồn cho các mạch đo lường, điều khiển, tín hiệu bảo vệ. Máy biến điện áp được chế tạo với điện áp 3kV trở lên. Máy biến áp đo lường được chọn theo các điều kiện sau: 1. Điện áp định mức. 2. Sơ đồ đấu dây kiểu máy. 3. Cấp chính xác. 4. Công suất định mức. 5. Chọn dây dẫn nối BU với các dụng cụ đo lường. * Chọn biến áp cao áp 110kV: Chọn máy biến áp đo lường loại do Liên Xô chế tạo có các thông số sau: Bảng 4.24: Thông số máy biến áp đo lường Điện áp định mức Công suất định mức VA khi Công Khối (V) cấp chính xác suất lớn Loại lƣợng nhất Sơ cấp Thứ cấp 0,5 1 3 (kg) (VA) HKФ-110 110000: 3 100: 3 150 500 1000 2000 875 *Chọn máy biến áp hạ áp 6,6kV: Chọn máy biến áp đo lường cũng do Liên Xô cũ chế tạo loại HTMИ-6 có thông số như sau: Bảng 4.25: Thông số máy biến áp đo lường Công suất định mức VA khi Công Điện áp định mức (V) Khối cấp chính xác suất lớn Loại lƣợng nhất Sơ cấp Thứ cấp 0,5 1 3 (kg) (VA) HTMИ-6 6000 100 -100: 80 150 320 700 105 78
  79. 4.3.8. Chọn aptomat cho phân xƣởng, các tủ phân phối và động cơ * Chọn aptomat cho tủ phân phối số 1 Aptomat được chọn theo điều kiện sau: UđmA UđmLĐ IđmA ITT ICđm IN Ta có dòng điện tính toán của nhóm 1: Ptt1 654,73 Itt1 = = 1350A 3.U đm .cos 3.0,4.0,7 S đmB 1600 IđmBA = 2309,4A 3.U đmBA 3.0,4 Vậy ta chọn aptomat loại M25 do hãng Merlin Gerin chế tạo có các thông số sau: Bảng 4.26: Thông số kỹ thuật aptomat tổng Loại Số cực Uđm(V) Iđm(A) INmax(kA) M25 3 690 2500 75 * Chọn aptomat cho tủ 2 Ta có dòng điện tính toán của nhóm 2: Ptt 2 149,12 Itt2 = = 307,48A 3.Uđm.cos 3.0,4.0,7 SđmB 500 IđmBA = 712,68A 3.U đmBA 3.0,4 Chọn aptomat do M08 do hãng Merlin Gerin chế tạo Bảng 4.27: Thông số kỹ thuật aptomat tổng tủ 2 Loại Số cực UĐM(V) Iđm(A) IN(kA) M08 3 690 800 40 * Chọn aptomat cho tủ 3 79
  80. Ta có dòng điện tính toán của nhóm 3: Ptt 3 476,82 Itt2 = = 983,18A 3.Uđm.cos 3.0,4.0,7 SđmB 1600 IđmBA = 2309,4A 3.U đmBA 3.0,4 Vậy ta chọn aptomat loại M25 do hãng Merlin Gerin chế tạo có các thông số sau: Bảng 4.28: Thông số kỹ thuật aptomat tổng Loại Số cực Uđm(V) Iđm(A) INmax(kA) M25 3 690 2500 75 * Chọn aptomat cho tủ 4 Ta có dòng điện tính toán của nhóm 4: Ptt 4 706,8 Itt2 = = 1457,4A 3.Uđm.cos 3.0,4.0,7 IđmBA = Vậy ta chọn aptomat loại M25 do hãng Merlin Gerin chế tạo có các thông số sau: Bảng 4.29: Thông số kỹ thuật aptomat tổng Loại Số cực Uđm(V) Iđm(A) INmax(kA) M25 3 690 2500 75 * Đối với các động cơ công suất lớn ta chọn aptomat riêng cho từng động cơ - Đối với giá cán thanh có P= 250kW có Itt = 343,66A, Uđm = 600V Chọn aptomat loại M08 do hãng Merlin Gerin chế tạo có các thông số sau: Bảng 4.30: Thông số kỹ thuật aptomat 80
  81. Loại Số cực Uđm(V) Iđm(A) INmax(kA) M08 3 690 800 40 - Đối với giá cán thanh có P=300kW, có Itt = 412,39A, Uđm = 600V Chọn aptomat loại M08 do hãng Merlin Gerin chế tạo có các thông số sau: Bảng 4.31: Thông số kỹ thuật aptomat Loại Số cực Uđm(V) Iđm(A) INmax(kA) M08 3 690 800 40 - Đối với giá cán thanh có P = 400kW, có Itt = 549,85A, Uđm = 600V Chọn aptomat loại M08 do hãng Merlin Gerin chế tạo có các thông số sau: Bảng 4.31: Thông số kỹ thuật aptomat Loại Số cực Uđm(V) Iđm(A) INmax(kA) M08 3 690 800 40 - Đối với giá giá cán cuộn có P = 850kW, có Itt = 1168,44A, Uđm = 600V Chọn aptomat loại M12 do hãng Merlin Gerin chế tạo có các thông số sau: Bảng 4.32: Thông số kỹ thuật aptomat Loại Số cực Uđm(V) Iđm(A) INmax(kA) M12 3 690 1250 40 Sau đây là sơ đồ bố trí các tủ động lực và các nhóm thiết bị: 81
  82. BA1 - 3150kVA 6,6/0,6 kV 3G300 MC- 3AF105-4 7,2kV- 630A M12 - 1250A M12 - 1250A 6,9kV 6,9kV 3G300 3G300 P(kW) 850 850 Itt/Ikd 1022,39/1700 1022,39/1700 Gi¸ Gi¸ Tên c¸n c¸n cuén cuén Hình 4.2: Sơ đồ bố trí thiết bị nhóm 1. 82
  83. BA2 - 4000kVA 6,6/0,6 kV 3G240 MC- 3AF105-4 7,2kV- 630 6xM08 - 800A 6,9kV G240 3G240 3G240 3G240 3G240 3G240 3 P(kW) 400 400 400 400 400 400 P(kW) 400 400 400 400 400 400 Itt/Ikd 481,12/800 481,12/800 481,12/800 481,12/800 Itt/Ikd 481,12/800Tên 481,12/800 giá cán giá cán giá cán giá cán giá cán giá cán Tên thanh thanh thanh thanh thanh thanh Hình 4.3: Sơ đồ bố trí thiết bị nhóm 2. 83
  84. BA3 - 2500kVA 6,6/0,6 kV 3AF 150-4 600A - 7,2kV 3G185 4x(M08 6,9kV - 800A) 3G185 3G185 3G185 3G185 P(kW) 300 300 300 300 360,8/600 360,8/600 360,8/600 360,8/600 Itt/Ikd Giá Giá Giá Giá Tên cán cán cán cán thanh thanh thanh thanh Hình 4.4: Sơ đồ bố trí thiết bị nhóm 3. 84
  85. BA4 - 2500kVA 6,6/0,6 kV 3G185 MC- 3AF150-4 7,2kV-630A 8xM08 - 800A 6,9kV 3G185 3G185 3G185 3G185 3G185 3G185 3G185 3G185 P(kW) 250 250 250 250 250 250 300 300 300,7/500 360,8/600 360,8/600 Itt/Ikd300,7/500 300,7/500 300,7/500 300,7/500 300,7/500 gi¸ gi¸ gi¸ gi¸ gi¸ gi¸ gi¸ gi¸ c¸n Tên c¸n c¸n c¸n c¸n c¸n c¸n c¸n thanh thanh thanh thanh thanh thanh thanh thanh Hình 4.5: Sơ đồ bố trí thiết bị nhóm 4. 85
  86. BA5 - 1600kVA 6,6/0,4 KV 3G185 3AF 150-4 600A - 7,2kV M08 6,9kV - 800A 100 100 100 350 100 1000 350 600 600 1000 60 60 80 200 60 600 300 430 500 600 3G2,5 3G2,5 3G4 3G16 3G2,5 3G95 3G35 3G50 3G70 3G95 P(kW) 15 15 15 15 15 22 50 45 7,5 7,5 140 75 100 110 140 27,1/30 39,7/44 252/280 Itt/Ikd 27,1/30 27,1/30 27,1/3027,1/30 90/100 81/90 13/15 13/15252/280 135/150 180/200 198/200 con con con con con con con MC MC MC §C sµn Tên l¨n l¨n l¨n l¨n l¨n l¨n l¨n sù cè ph©n ph©n MC MC t¹o nguéi MC ®o¹n ®o¹n cu«n Hình 4.6: Sơ đồ tủ động lực 1. 86
  87. BA6 - 500kVA 6,6/0,4 kV 3G150 3AF 150-4 600A - 7,2kV M08 6,9kV - 800A 15 15 15 100 100 200 200 200 200 600 10 10 10 80 80 160 160 160 160 500 3G2,5 3G2,5 3G2,5 3G2,5 3G1,5 3G2,5 3G2,5 3G2,5 3G4 3G2,5 P(kW) 15 5,5 15 5,5 15 5,5 15 5,5 5,5 5,5 15 2,2 15 2,2 7,5 3,7 15 15 15 9,9/11 9,9/11 27,1/30 3,9/4.4 27,1/30 13,5/18.7 6,6/7 27,1/30 27,1/30 27,1/30 Itt/Ikd 27,1/30 9,9/11 27,1/30 9,9/11 27,1/30 9,9/11 27,1/30 9,9/11 3,9/4.4 §C §C §C §C §C §C truyÒn qu¹t truyÒn qu¹t truyÒn qu¹t truyÒn truyÒn truyÒn §C §C §C §C §C §C C•a Tên qu¹t C•a C•a giã con giã con giã con giã con con con vã con vã con vã vã l¨n l¨n l¨n l¨n l¨n l¨n l¨n l¨n Hình 4.7: Sơ đồ tủ động lực 2. 87
  88. BA7 - 1600kVA 6,6/0,4 kV 3G185 3AF 150-4 630A - 7,2kV M08 6,9kV - 800A 15 15 15 100 100 200 1000 600 600 600 10 10 10 80 80 160 600 500 500 500 3G1,5 3G1,5 3G1,5 3G10 3G10 3G10 3G70 3G70 3G70 3G70 P(kW) 0,55 0,55 0,55 0,55 0,55 0,55 22 4 22 15 37 7,5 132 110 110 110 27,1/3066,7/74 198/200 198/200 Itt/Ikd 0,9/3 0,9/3 0,9/3 0,9/3 0,9/3 0,9/3 39,7/44 7,2/8 39,7/44 13,5/15 238/264198/200 bµn bµn bµn bµn bµn bµn th¸p th¸p th¸p th¸p qu¹t lµm lµm lµm Tên MC xe ca l¨n l¨n l¨n l¨n l¨n l¨n n•íc n•íc n•íc n•íc giã m¸t m¸t m¸t Hình 4.8:Sơ đồ tủ động lực 3. 88
  89. BA8 - 1600kVA 6,6/0,4 kV 3G185 3AF 150-4 600A - 7,2kV M25 6,9kV - 2500A 350 350 350 350 350 350 350 1000 1000 1000 200 200 300 300 200 300 300 600 600 600 3G16 3G16 3G35 3G35 3G10 3G16 3G16 3G95 3G95 3G95 P(kW) 25 25 22 30 3,7 55 7,5 55 30 22 0,37 75 75 0,85 150 0,85 0,75 150 150 Itt/Ikd 99/110 13,5/15 1.5/1.7 270/300 45/50 45/50 40/44 54/60 6/7 99/110 54/60 40/44 0.6/0.7 135/150135/150 1.5/1.7 270/300 1.3/1.5 270/300 b¬m b¬m nhËn b¬m b¬m b¬m b¬m b¬m n¹p b¬m b¬m mì b¬m b¬m b¬m mì m¸y nÐnb¬m b¬m m¸y nÐn m¸y nÐn Tên ph«i dÇu c¸n dÇu c¸n dÇu c¸n dÇu bã dÇu bã n•íc ph«i n•íc dÇu c¸n c¸n n•íc n•íc c¸n khÝ mì c¸n mì c¸n khÝ khÝ block trung tinh thÐp thÐp th« th« block tinh trung Hình 4.9:Sơ đồ tủ động lực 4. 89
  90. CHƢƠNG 5. TÍNH BÙ COSΨ CHO CÔNG TY THÉP VIỆT – HÀN 5.1.ĐẶT VẤN ĐỀ Điện năng là năng lượng chủ yếu của xí nghiệp công nghiệp. Các xí nghiệp này tiêu thụ khoảng trên 70% tổng số điện năng được sản xuất ra vì thế vấn đề sử dụng hợp lý và tiết kiệm của điện năng trong xí nghiệp công nghiệp có ý nghĩa rất lớn. Về mặt sản xuất điện năng vấn đề đặt ra phải tận dụng hết khả năng của các nhà máy phát điện để sản xuất ra được nhiều điện nhất, đồng thời về mặt dùng điện phải hết sức tiết kiệm, giảm tổn thất điện năng đến mức nhỏ nhất, phấn đấu để một kWh điện ngày càng làm ra nhiều sản phẩm hoặc chi phí điện năng cho một đơn vị ngày càng giảm. Tính chung cho toàn hệ thống điện thường có 10 – 15% năng lượng được phát ra bị mất mát trong quá trình truyền tải và phân phối tổn thất điện năng trong hệ thống điện (chỉ xét đến đường dây và máy biến áp). Từ bảng phân tích chúng ta thấy rằng tổn thất điện năng trong mạng có U = 0.1 – 10kV (tức mạng trong các xí nghiệp) chiếm tới 64.4% tổng số điện năng tổn thất. Sở dĩ như vậy, bởi vì điện mạng trong xí nghiệp thường dùng điện áp tương đối thấp, đường dây lại dài phân tán từng phụ tải gây nên tổn thất điện năng lớn. Vì thế, việc thực hiện các biện pháp tiết kiệm trong xí nghiệp công nghiệp có ý nghĩa rất quan trọng, không những có lợi cho bản thân các xí nghiệp mà còn có lợi chung cho nền kinh tế quốc dân. Hệ số công suất cosυ là một chỉ tiêu để đánh giá xí nghiệp dùng điện có hợp lý và tiết kiệm hay không. Hệ số công suất cosυ của xí nghiệp nước ta hiện nay nói chung còn thấp (khoảng 0.6 – 0.7), chúng ta cần phấn đấu để nâng cao dần lên tới 0.9. Ý nghĩa của việc nâng cao hệ số công suất cosυ: 90
  91. - Giảm được tổn thất công suất trên mạng điện. - Giảm được tổn thất điện áp trên mạng điện. - Tăng khả năng truyền tải của đường dây và máy biến áp. Để nâng cao hệ số công suất cosυ có nhiều phương pháp khác nhau nhưng được chia làm hai nhóm chính: Nâng cao hệ số công suất cosυ tự nhiên: Nâng cao hệ số công suất cosυ tự nhiên là tìm các biện pháp để các hộ dùng điện giảm bớt được lượng công suất phản kháng Q tiêu thụ như : áp dụng các quá trình công nghệ tiên tiến, sử dụng hợp lý các thiết điện v.v Như vậy, nâng cao hệ số cosυ tự nhiên rất có lợi vì đưa lại hiệu quả kinh tế mà không phải đặt thêm thiết bị bù. Vì thế khi xét đến vấn đề nâng cao hệ số cosυ bao giờ cũng phải xét tới các biện pháp nâng cao hệ số cosυ tự nhiên trước tiện, sau đó mới xét tới biện pháp bù công suất phản kháng. Nâng cao hệ số công suất cosυ bằng phương pháp bù. Bằng cách đặt các thiết bị bù ở gần các hộ dùng điện để cung cấp công suất phản kháng cho chúng, ta giảm được lượng công suất phản kháng phải truyền tải trên đường dây do đó nâng cao được hệ số cosυ của mạng. Biện pháp bù không giảm được lượng công suất phản kháng tiêu thụ của các hộ dùng điện mà chỉ giảm được lượng công suất phản kháng phải truyền tải trên đường dây mà thôi. Vì thế, chỉ sau khi thực hiện các biện pháp nâng cao cosυ tự nhiên mà không đạt yêu cầu thì chúng ta mới xét tới phương pháp bù. Nói chung hệ số cosυ tự nhiên của các xí nghiệp cao nhất cũng không đạt tới 0.9 (thường vào khoảng 0.7 – 0.8) vì thế ở các xí nghiệp hiện đại bao giờ cũng phải đặt các thiết bị bù. Cần chú ý rằng bù công suất phản kháng Q ngoài mục đích chính là nâng cao hệ số công suất cosυ để tiết kiệm điện còn có tác dụng không kém phần quan trọng là điều chỉnh và ổn định điện áp của mạng cung cấp. 91
  92. Các thiết bù được sử dụng là tụ điện (loại thiết bị điện tĩnh), máy bù đồng bộ và động cơ không đồng bộ rô to dây quấn được đồng bộ hóa, nhưng tụ điện được sử dụng rộng rãi hơn cả do chúng có : Ưu điểm : - Tổn thất công suất bé. - Không có phần quay nên lắp ráp bảo quản dễ dàng. Nhược điểm : - Tụ điện nhạy cảm với sự biến động của điện áp đặt lên cực của tụ điện, khi điện áp tăng đến 110%Uđm. - Tụ điện có cấu tạo kém chắc chắn, dễ bị phá hỏng. Các phương pháp điều khiển dung lượng bù: - Điều chỉnh dung lượng bù theo nguyên tắc thời gian. - Điều chỉnh dung lượng bù theo nguyên tắc điện áp. - Điều chỉnh dung lượng bù theo dòng điện phụ tải. - Điều chỉnh dung lượng bù theo hướng đi của công suất phản kháng. Có các vị trí bù như sau: - Đặt tụ bù tại thanh cái hạ áp các trạm biến áp phân xưởng. - Đặt tụ bù tại các trạm phân phối phân xưởng, các tủ trong phân xưởng. - Đặt tụ bù phía thanh cái trạm phân phối trung tâm. 92
  93. 5.2. TÍNH CHỌN TỤ BÙ Vì nhà máy có công suất rất lớn nên việc bù ở phía hạ áp là không kinh tế vì cần dùng rất nhiều tụ nên ở đây ta xét đến việc bù ở thanh cái 6,6kV, vì công ty có rất nhiều các động cơ công suất lớn và hầu hết tới 98% làm việc liên tục nếu đặt thiết bị bù phân tán sẽ rất tốn kém. Yêu cầu lựa chọn tụ bù để nâng cao hệ số công suất cosυ của công ty thép Việt – Hàn lên 0,95 Công suất tính toán của công ty là : S = 7895,93 + j7884,58 Hệ số cosυ của nhà máy theo tính toán của chương 2 là cosυ = 0,70 Số liệu tính toán của trạm biến áp phân xưởng: Stt = P + jQ (kVA) Từ đây tính được tổng công suất phản kháng cần bù để nâng cosυ của công ty từ 0,7 lên 0,95: Qb = P (tgυ1 – tgυ2) = 7895,93 . (1,02 – 0,33) = 5448 (kVAr) Như vậy dung lượng cần bù là 5448 kVAr Do đó ta chọn 4 tụ bù loại có VCB- 300A 93
  94. Tr¹m An L¹c 110kv DS ES 121kV - 1200A 121kV - 1200A GCB 170kV - 1250A PBC 31,5kA 110kV - 10kA NDS 72kV PBC 300A Main transformer 110kV - 1200kA 110/6,6kV - 15/20MVA MV1 25kA 7,2kV-2500A 6,6kV BUS bar system MV2 MV3 MV4 MV5 MV6 MV7 MV8 MV10 MV9 MV11 MV14 VCB VCB VCB VCB VCB VCB VCB VCB VCB VCB MV12 DS 3P 7,2kV-600A 7,2kV-600A 7,2kV-600A 7,2kV-600A 7,2kV-600A 7,2kV-600A 7,2kV-600A 7,2kV-600A 7,2kV-600A 7,2kV-600A VCB VC1 VC2 VC3 VC4 7,2kV-600A 600A VCB VCB VCB VCB 300A 300A 300A 300A TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR9 TR8 TR10 PBC 6,6/0,6kV 6,6/0,6kV 6,6/0,6kV 6,6/0,6kV 6,6/0,6kV 6,6/0,4kV 6,6/0,4kV 6,6/0,4kV 6,6/0,4kV 6,6/0,4kV 2000kVA 3000kVA 4000kVA 2500kVA 2000kVA 500kVA 1600kVA 400kVA 1600kVA G 300kVA E.TR 9kV 400kA 5kA LV1 LV2 LV3 LV1 LV5 LV6 LV7 LV11 LV8 LV LV12 ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB ACB N.GR 2500A 3200A 4000A 2500A 2500A 2500A 2500A 1000A 2500A 1000A 2500A 381ohm 42kA 50kA 65kA 42kA 42kA 42kA 42kA 25kA 42kA 25kA 42kA MBA trung tô bï 1 tô bï 2 tô bï 3 tô bï 4 chèng sÐt ¸nh s¸ng cÊp ®iÖn söa tÝnh ATS ch÷a nguån dù phßng Hình 5.1: Sơ đồ bù cao áp của công ty. 94
  95. KẾT LUẬN Sau gần 3 tháng thực hiện đề tài “ Thiết kế cung cấp điện công ty thép Việt – Hàn ” dưới sự hướng dẫn tận tình của thầy giáo Th.s Nguyễn Đoàn Phong cùng với sự cố gắng của bản thân đến nay em đã hoàn thành đồ án của mình với nội dung như sau: - Thống kê phụ tải và tính toán phụ tải. - Lựa chọn dung lượng và số lượng máy biến áp. - Tính chọn cao áp, hạ áp và các thiết bị trong hệ thống. - Tính toán ngắn mạch kiểm tra các phần tử đã chọn. - Bù cosυ cho toàn nhà máy. Qua đó em đã thấy rằng chất lượng điện năng góp phần quyết định tới chất lượng và giá thành sản phẩm được sản xuất ra của nhà máy. Chính vì vậy việc thiết kế cấp điện của công ty nhằm đảm bảo độ tin cậy và nâng cao chất lượng điện năng đặt lên hàng đầu. Một phương án cấp điện tối ưu là phải đảm bảo cả về kĩ thuật và mặt kinh tế và để đạt được điều đó người thiết kế cần phải tuân theo các quy trình, quy phạm để đảm bảo độ tin cậy cũng như an toàn khi sử dụng. Do trình độ còn có hạn và hạn chế về thời gian nên đồ án của em còn nhiều sai sót mong được sự chỉ bảo của các thầy các cô. Cuối cùng một lần nữa em xin chân thành cảm ơn đến các thầy cô trong khoa đặc biệt là thầy giáo Th.s Nguyễn Đoàn Phong đã hưỡng dẫn tận tình, chỉ bảo và giúp đỡ em trong quá trình làm đồ án tốt nghiệp vừa qua. Em xin chân thành cảm ơn! Hải Phòng, ngày 4 tháng 7 năm 2011 Sinh viên Vũ Thị Kim Anh 95
  96. TÀI LIỆU THAM KHẢO [1]. Ngô Hồng Quang - Vũ Văn Tẩm (2001), Thiết kế cấp điện, NXB khoa học - kỹ thuật [2]. Nguyễn Công Hiền - Nguyễn Mạnh Hoạch (2001), Hệ thống cung cấp Xí nghiệp công nghiệp, đô thị và nhà cao tầng, NXB khoa học - kỹ thuật. [3]. Nguyễn Xuân Phú - Nguyễn Công Hiền - Nguyễn Bội Khuê (1998), Cung cấp điện, Nhà xuất bản khoa học kỹ thuật. [4]. Ngô Hồng Quang (2002), Sổ tay lựa chọn và tra cứu thiết bị điện từ 0,4 đến 500kV, NXB khoa học - kỹ thuật. 96