Giáo trình Cân bằng pha (Bản đẹp)
Bạn đang xem tài liệu "Giáo trình Cân bằng pha (Bản đẹp)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- giao_trinh_can_bang_pha_ban_dep.pdf
Nội dung text: Giáo trình Cân bằng pha (Bản đẹp)
- Ch−ơng IV: Cân bằng pha I. Một số khái niệm 1. Pha (Φ ) lμ phần đồng thể của hệ có thμnh phần, tính chất lý học , tính chất hoá học giống nhau ở mọi điểm của phần đồng thể đó vμ có bề mặt phân chia với các phần khác của hệ. - Pha chỉ gồm 1 chất gọi lμ pha nguyên chất (pha đơn) còn pha gồm 2 chất trở lên > gọi lμ pha phức tạp. - Hệ gồm 1 pha > hệ đồng thể. - Hệ ≥ 2 pha -> hệ dị thể. Ví dụ: Hệ gồm H2O đá + H2O lỏng + H2O hơi => gồm 3 pha: rắn, lỏng, hơi. Hệ gồm CaCO3(r), CaO(r),CO2(k) > 3 pha: 2 fa rắn + 1 pha khí 2. Cấu tử: Lμ phần hợp thμnh của hệ có thể đ−ợc tách ra khỏi hệ vμ tồn tại đ−ợc bên ngoμi hệ. Số cấu tử trong hệ kí hiệu lμ R Ví dụ: dung dịch NaCl gồm 2 cấu tử lμ NaCl vμ H2O > R=2 3.Số cấu tử độc lập (K): Lμ số tối thiểu các cấu tử đủ để xác định thμnh phần của tất cả các pha trong hệ. - Nếu các cấu tử không phản ứng với nhau vμ nếu pha có thμnh phần khác nhau thì K=R (trong hệ không có ph−ơng trình liên hệ nồng độ các cấu tử) Ví dụ: dung dịch NaCl => R=K=2. -Nếu các cấu tử t−ơng tác với nhau vμ nằm cân bằngvới nhau > chúng không còn độc lập với nhau nữa > K=R-q q: số hệ thức liên hệ giữa các nồng độ ( q có thể lμ ph−ơng trình hằng số cân bằng, điều kiện đầu về nồng độ của các cấu tử) Ví dụ: Hệ gồm 3 cấu tử HCl, Cl2, H2 đều lμ các chất khí có t−ơng tác,nằm cân bằng với nhau: 2HCl(k) H2(k) + Cl2(k) [][]H 2 Cl2 K C = => biết đ−ợc nồng độ của 2 cấu tử sẽ biết đ−ợc nồng []HCl 2 độ của cấu tử còn lại. Vậy hệ có: R=3, q=1, ==> K= R-q=2 Nếu giả thiết ban đầu hệ chỉ có HCl ( hoặc cho tỉ lệ mol H2:Cl2 ban đầu) => q=2 => K=1 4.Bậc tự do của hệ(C): Lμ số tối thiểu các thông số trạng thái c−ờng độ (P,T,C) đủ để xác định trạng thái cân bằng của 1 hệ ( lμ số thông số trạng thái c−ờng độ có thể thay đổi 1cách độc lập mμ không lμm biến đổi số pha của hệ) Ví dụ: H2O(l) H2O(k) ==> cân bằng có 2 pha==> C=1 vì + Có thể thay đổi 1 trong 2 thông số P hoặc T mμ không lμm thay đổi số pha của hệ.
- + Hoặc: ở một nhiệt độ xác định thì P hơi H2O nằm cân bằng với H2O lỏng lμ xác định, tức lμ chỉ cần biết 1 trong 2 thông số T hoặc P thì xác định đ−ợc trạng thái cân bằng của hệ. 5.Cân bằng pha: Cân bằng trong các hệ dị thể, ở đó các cấu tử không phản ứng hoá học với nhau nh−ng xảy ra các quá trình biến đổi pha của các cấu tử => cân bằng pha. II. Quy tắc pha Gibbs. Xét hệ gồm R cấu tử 1,2, R đ−ợc phân bố trong φ pha (α, β,γ , ,φ pha) 1.Điều kiện để các pha nằm cân bằng với nhau: Đảm bảo các cân bằng sau: - Cân bằng nhiệt: nhiệt độ ở các pha bằng nhau Tα = Tβ = Tγ = = Tφ -Cân bằng cơ: áp suất ở các pha bằng nhau Pα = Pβ = Pγ = = Pφ -Cân bằng hoá: thế hoá của mỗi cấu tử trong các pha bằng nhau: i i i i μα = μ β = μγ = = μφ 2.Qui tắc pha Gibbs - Các thông số trạng thái c−ờng độ xác định trạng thái của hệ lμ T,P, C Gọi Ni lμ nồng độ mol phần của cấu tử i trong 1 pha thì N1+N2+N3+ +Ni=1 => Vậy để xác định nồng độ của R cấu tử trong 1 pha cần biết nồng độ của (R-1) cấu tử. Vì có φ pha => để xác định nồng độ của R cấu tử trong φ pha thì số nồng độ cần biết lμ φ (R-1). Từ đó số thông số trạng thái c−ờng độ xác định trạng thái của hệ lμ φ (R-1)+ 2 trong đó số 2: biểu thị 2 thông số bên ngoμi lμ T vμ P xác định trạng thái của hệ Vì các pha nằm cân bằng với nhau => các thông số không độc lập với nhau nữa: μ có liên hệ với nồng độ mμ khi cân bằng thì μ của mỗi cấu tử trong các pha phải bằng nhau ( điều kiện cân bằng hoá) μ1 (α) = μ1 (β ) = = μ1 (φ) μ 2 (α) = μ 2 (β ) = = μ 2 (φ) μ R (α) = μ R (β ) = = μ R (φ) => Mỗi cấu tử có (φ -1) ph−ơng trình liên hệ ==> R cấu tử có có R(φ -1) ph−ơng trình liên hệ giữa các thông số. Nếu có thêm q ph−ơng trình liên hệ nồng độ các cấu tử, ví dụ: khi có phản ứng hoá học giữa các cấu tử thì số ph−ơng trình liên hệ các thông số trạng thái c−ờng độ của hệ lμ: R(φ -1) + q
- Bậc tự do của hệ = Các thông số trạng thái – số ph−ơng trình liên hệ giữa các thông số ệ C= [φ (R-1)+2]-[R(φ -1)+q] ệ C=R-q-φ +2 ệ C= K - q + 2 => Biểu thức toán học của quy tắc pha Gibbs * Nhận xét: + Khi K tăng, => C tăng, φ tăng vμ C giảm. + Bậc tự do C ≥ 0 ⇒ φ ≤ K + 2 +Nếu trong điều kiện đẳng nhiệt hoặc đẳng áp thì: C =K -φ + 1 (Nếu ph−ơng trình có Δn = 0 => P không ảnh h−ởng tới phản ứng > dùng ph−ơng trình nμy) +Nếu hệ vừa đẳng nhiệt vừa đẳng áp thì C=K-φ Ví dụ1: Xét hệ 1 cấu tử (R=K=1), ví dụ n−ớc nguyên chất - Nếu ở trạng thái hơi => φ =1 => C= K-φ +2= 1-1+2=2 => trạng thái của hơi n−ớc đ−ợc xác định bởi 2 thông số trạng thái c−ờng độ lμ T vμ P - Nếu hơi n−ớc nằm cân bằng với n−ớc lỏng thì φ =2=> C=1-2+2=1 => trạng thái của hệ gồm H2O lỏng vμ hơi đ−ợc xác định bởi 1 trong 2 thông số lμ T hoặc P ( vì ở 1nhiệt độ xác định thì P của hơi n−ớc lμ xác định) Ví dụ2: Xét hệ gồm: Mg(OH)2 (r) MgO (r) + H2O(k) φ =2 pha rắn + 1 pha khí =3 pha C=R-q+2=3-1-3+2=1 => đ−ợc phép thay đổi 1 trong 2 thông số lμ T hoặc P mμ không lμm thay đổi số pha của hệ hoặc trạng thái cân bằng đ−ợc xác định bằng 1 trong 2 thông số T hoặc P H2O(h) III.Cân bằng pha trong hệ 1 cấu tử 1.Cân bằng pha trong hệ 1 cấu tử Xét hệ gồm 1 chất nguyên chất, khi trong hệ có 2 pha nằm cân bằng nhau: Rắn(R) Lỏng(L) Lỏng(L) Hơi (H) Rắn (R) Hơi (H) (R (α ) ⇔ R (β ) ) => vì hệ 1 cấu tử, số pha ≤ 3(3 ≤ K + 2 ) => C= K-φ +2 =1-2+2 =1 (R=K-1) trạng thái cân bằng giữa hai pha đ−ợc đặc tr−ng bởi hoặc T hoặc P, tức lμ nếu 1 trong 2 thông số trạng thái lμ P hoặc T biến đổi thì thông số kia phải biến đổi theo: p=f(T) hoặc T=f(P). Cụ thể lμ : - ở P=const=> chất nguyên chất nóng chảy, sôi hoặc chuyển trạng thái tinh thể ở 1 nhiệt độ nhất định, đ−ợc gọi lμ nhiệt độ chuyển phaTcf, nhiệt độ nμy không bị biến đổi trong suốt quá trình chuyển pha. Khi áp suất thay đổi => Tcf thay đổi theo. Vídụ: ở P=1atm, n−ớc nguyên chất đông đặc ở 00C vμ sôi ở 1000C ở P=2atm, n−ớc nguyên chất đông đặc ở –0,00760C vμ sôi ở 1200C
- -ở T=const, hơi nằm cân bằng với lỏng vμ rắn có P nhất định gọi lμ P hơi bão hoμ (hơi đó đ−ợc goi lμ hơi bão hoμ) Các đ−ờng cong biểu thị sự phụ thuộc của Phơi bão hoμ của pha rắn vμo nhiệt độ, của pha lỏng vμo nhiệt độ vμ nhiệt độ nóng chảy vμo P cắt nhau tại 1 điểm gọi lμ điểm ba, ở điểm ba nμy ba pha rắn lỏng hơi (R, L, H) nằm cân bằng với nhau: R L H Khi đó C=1-3+2 =0 => vị trí điểm ba không phụ thuộc vμo T vμ P mμ chỉ phụ thuộc vμo bản chất chất nghiên cứu. 2. ảnh h−ởng của áp suất đến nhiệt độ nóng chảy, sôi vμ chuyển dạng tinh thể của chất nguyên chất Vì hệ 1 cấu tử nên thế hóa đồng nhất với thế đẳng áp mol (Gi=μi ). Khi T, P không đổi điều kiện cân bằng giữa hai phaα vμ β lμ: G(α) = G(β) Vì hệ có C=1 nên nếu một thông số biến đổi, ví dụ, áp suất biến đổi một l−ợng dP thì muốn hai pha tồn tại cân bằng, nhiệt độ cũng phải biến đổi một l−ợng dT. Khi đó thế đẳng áp mol phải biến đổi: G(α) − > G(α) + dG(α) G(β) − > G(β) + dG(β) Sao cho: G(α) + dG(α) = G(β) + dG(β) => dG(α) = dG(β) Thay vμo công thức: dG= VdP –SdT ta có: V(α)dP − S (α)dT = V(β)dP − S (β)dT dT V(α) − V(β) ΔV => = = dP S (α) − S (β) ΔS ΔH Có ΔS = suy ra: T dT T ΔV = cf ẻ ph−ơng trình Clapeyron dP ΔH cf Trong đó ΔH đ−ợc tính bằng J thì ΔV tính bằng m3, T bằng K vμ P bằng Pa. - Khi một chất sôi thì ΔV =Vh- Vl >0 vμ ΔH hh>0 (hh:hóa hơi), nên áp suất bên ngoμi tăng thì nhiệt độ sôi tăng theo. - Khi nóng chảy ΔH nc >0 vμ đa số tr−ờng hợp ΔV = Vl-Vr >0, do đó P tăng thì nhiệt độ nóng chảy tăng. Đối với n−ớc Vl<Vr nên ΔV <0 nghĩa lμ áp suất tăng thì nhiệt độ nóng chảy của n−ớc giảm.
- 3. ảnh h−ởng của nhiệt độ đến áp suất hơi bão hoμ của chất nguyên chất Xét các tr−ờng hợp: L H R H Vì Vr,Vl ΔV = Vh − Vl ≈ Vh vμ ΔV = Vh − Vr ≈ Vh Nếu hơi đ−ợc coi lμ khí lý t−ởng,xét đối với 1 mol có: RT V = thay vμo ph−ơng trình Clayperon có: h P dP ΔHcf ΔHcf ΔHcf = = = 2 .P dT Tcf .ΔV Tcf .V Tcf .R dP ΔH dP => = dT (vì = d ln P ) nên có: P RT 2 P d ln P ΔH = -> ph−ơng trìnhClaypeyron-Clausius dT RT 2 Trong khoảng nhiệt độ hẹp -> có thể coi ΔH = const khi đó có P ΔH ⎛ 1 1 ⎞ 2 ⎜ ⎟ ln = ⎜ − ⎟ (*) P1,P2 : cùng đơn vị P1 R ⎝ T1 T2 ⎠ R=8,314J.K-1.mol-1 ΔH : J Biểu thức (*) cho biết có thể: - Tính áp suất hơi bão hoμ ở nhiệt độ T2(hoặc T1) khi biết P ở nhiệt độ T1 vμ ΔH cf - Tính nhiệt độ sôi ở P bất kì khi biết nhiệt độ sôi ở một áp suất nμo đó vμ ΔH bay hơi. Tính ΔH bằng cách đo P1 vμ P2 ở 2 nhiệt độ khác nhau. Tài liệu tham khảo: 1. Nguyễn Đỡnh Chi, Cơ Sở Lớ Thuyết Húa Học, NXB GD, 2004. 2. Nguyễn Hạnh, , Cơ Sở Lớ Thuyết Húa Học, Tập 2, NXB GD 1997. 3. Lờ Mậu Quyền, Cơ Sở Lớ Thuyết Húa Học - Phần Bài Tập, NXB KHKT, 2000.