Bài giảng Giải tích 1 - Hàm số một biến số - Tích phân - hàm số nhiều biến số

pdf 37 trang huongle 9190
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Giải tích 1 - Hàm số một biến số - Tích phân - hàm số nhiều biến số", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfbai_giang_giai_tich_1_ham_so_mot_bien_so_tich_phan_ham_so_nh.pdf

Nội dung text: Bài giảng Giải tích 1 - Hàm số một biến số - Tích phân - hàm số nhiều biến số

  1. BÙI XUÂN DIỆU KHOA TOÁN TIN ỨNG DỤNG Bài Giảng GIẢI TÍCH I (lưu hành nội bộ) HÀM SỐ MỘT BIẾN SỐ -TÍCH PHÂN -HÀM SỐ NHIỀU BIẾN SỐ Tóm tắt lý thuyết, Các ví dụ, Bài tập và lời giải Hà Nội- 2009
  2. MỤC LỤC Mục lục 1 Chương1.Hàmsốmộtbiếnsố(13LT+13BT). . . . . . . . . . . . . . . . . 5 1 Sơ lược về các yếu tố Lôgic; các tập số: N, Z, Q, R 5 2 Trịtuyệtđốivàtínhchất . 5 3 Định nghĩa hàm số, tập xác định, tập giá trị và các khái niệm: hàm chẵn, hàm lẻ, hàm tuần 3.1 Bàitập 7 4 Dãysố 10 4.1 Bàitập 11 5 Giớihạnhàmsố 14 6 Vôcùnglớn,vôcùngbé 15 6.1 Vôcùngbé(VCB) 15 6.2 Vôcùnglớn(VCL) 16 6.3 Bàitập 16 7 Hàmsốliêntục 18 7.1 Bàitập 20 8 Đạohàmvàviphân 22 8.1 Bàitập 24 9 Cácđịnhlývềhàmkhảvivàứngdụng 28 9.1 Cácđịnhlývềhàmkhảvi 28 9.2 QuitắcL’Hospital 29 10 Cáclượcđồkhảosáthàmsố 33 10.1 Khảo sát và vẽ đồ thị của hàm số y = f (x) 33 10.2 Khảosátvàvẽđườngcongchodướidạngthamsố . . . . . . . . . . . 34 10.3 Khảosátvàvẽđườngcongtronghệtoạđộcực . . . . . . . . . . . . . 35 10.4 Bàitập 35 Chương2.Phéptínhtíchphânmộtbiếnsố. . . . . . . . . . . . . . . . . 37 1 Tíchphânbấtđịnh 37 1
  3. 2 MỤC LỤC 1.1 Nguyênhàmcủahàmsố 37 1.2 Cácphươngpháptínhtíchphânbấtđịnh . . . . . . . . . . . . . . . . 39 1.3 Tíchphânhàmphânthứchữutỷ . . . . . . . . . . . . . . . . . . . . . 43 1.4 Tíchphânhàmlượnggiác 45 1.5 Tíchphâncácbiểuthứcvôtỷ 47 2 Tíchphânxácđịnh 49 2.1 Địnhnghĩatíchphânxácđịnh . . . . . . . . . . . . . . . . . . . . . . 49 2.2 Cáctiêuchuẩnkhảtích 49 2.3 Cáctínhchấtcủatíchphânxácđịnh . . . . . . . . . . . . . . . . . . . 50 2.4 Tích phân với cận trên thay đổi (hàm tích phân) . . . . . . . . . . . . 51 2.5 Cácphươngpháptínhtíchphânxácđịnh . . . . . . . . . . . . . . . . 51 2.6 Hệthốngbàitập 52 3 Cácứngdụngcủatíchphânxácđịnh. . . . . . . . . . . . . . . . . . . . . . . 59 3.1 Tínhdiệntíchhìnhphằng 59 3.2 Tínhđộdàiđườngcongphẳng. . . . . . . . . . . . . . . . . . . . . . . 62 3.3 Tínhthểtíchvậtthể 63 3.4 Tínhdiệntíchmặttrònxoay. . 65 4 Tíchphânsuyrộng 67 4.1 Tíchphânsuyrộngvớicậnvôhạn . . . . . . . . . . . . . . . . . . . . 67 4.2 Tíchphânsuyrộngcủahàmsốkhôngbịchặn . . . . . . . . . . . . . 69 4.3 Tíchphânsuyrộnghộitụtuyệtđốivàbánhộitụ . . . . . . . . . . . 70 4.4 Cáctiêuchuẩnhộitụ 71 4.5 Bàitập 72 Chương3.Hàmsốnhiềubiếnsố . . . . . . . . . . . . . . . . . . . . . . 79 1 Giớihạncủahàmsốnhiềubiếnsố . . 79 1.1 Giớihạncủahàmsốnhiềubiếnsố . . . . . . . . . . . . . . . . . . . . 79 1.2 Tínhliêntụccủahàmsốnhiềubiếnsố. . . . . . . . . . . . . . . . . . 80 1.3 Bàitập 80 2 Đạohàmvàviphân 81 2.1 Đạohàmriêng 81 2.2 Viphântoànphần 82 2.3 Đạohàmcủahàmsốhợp 82 2.4 Đạohàmvàviphâncấpcao 83 2.5 Đạohàmtheohướng-Gradient. . . . . . . . . . . . . . . . . . . . . . 84 2.6 Hàmẩn-Đạohàmcủahàmsốẩn 85 2.7 Bàitập 85 3 Cựctrịcủahàmsốnhiềubiếnsố 92 3.1 Cựctrịtựdo 92 2
  4. MỤC LỤC 3 3.2 Cựctrịcóđiềukiện 94 3.3 Giátrịlớnnhất-Giátrịnhỏnhất . . . . . . . . . . . . . . . . . . . . 97 3
  5. 4 MỤC LỤC 4
  6. CHƯƠNG 1 HÀM SỐ MỘT BIẾN SỐ (13LT+13BT) §1. SƠ LƯỢC VỀ CÁC YẾU TỐ LÔGIC; CÁC TẬP SỐ: N, Z, Q, R 1. Phần Lôgic không dạy trực tiếp (phần này Đại số đã dạy) mà chỉ nhắc lại những phép suy luận cơ bản thông qua bài giảng các nội dung khác nếu thấy cần thiết. 2. Giới thiệu các tập số; cần nói rõ tập Q tuy đã rộng hơn Z nhưng vẫn chưa lấp đầy trục số còn tập R đã lấp đầy trục số và chứa tất cả các giới hạn của các dãy số hội tụ, ta có bao hàm thức N Z Q R. ⊂ ⊂ ⊂ §2. TRỊ TUYỆT ĐỐI VÀ TÍNH CHẤT Nhắc lại định nghĩa và nêu các tính chất sau x 0, x = 0 x = 0, x + y x + y ; • | | ≥ | | ⇐⇒ | | ≤ | | | | x y x y , x A x A hoặc x A • | − | ≥ || | − | || | | ≥ ⇐⇒ ≥ ≤− x B B x B. • | | ≤ ⇐⇒ − ≤ ≤ 5
  7. 6 Chương 1. Hàm số một biến số (13LT+13BT) §3. ĐỊNH NGHĨA HÀM SỐ, TẬP XÁC ĐỊNH, TẬP GIÁ TRỊ VÀ CÁC KHÁI NIỆM: HÀM CHẴN, HÀM LẺ, HÀM TUẦN HOÀN, HÀM HỢP, HÀM NGƯỢC 1. Định nghĩa hàm số: Nhắc lại định nghĩa ở phổ thông. Chú ý nếu viết dưới dạng ánh xạ f : X R thì tập → xác định đã rõ chính là X còn biểu thức của f (dưới dạng biểu thức giải tích) là chưa rõ, có thể không tìm được biểu thức ấy. Còn nếu hàm số được cho dưới dạng biểu thức giải tích thì cần phải xác định rõ miền xác định của hàm số. Trong chương trình chỉ tập trung vào cách cho hàm số dạng một hay nhiều biểu thức giải tích. Một số hàm Dirichlet, dấu, phần nguyên có thể nêu dưới dạng ví dụ hay thể hiện qua các phần dạy khác. Tập giá trị của hàm số: 2. Hàm số đơn điệu 3. Hàm số bị chặn (chặn trên, chặn dưới, bị chặn). 4. Hàm chẵn, hàm lẻ (tính chất của đồ thị và kết quả f (x)= hàm chẵn + hàm lẻ). 5. Hàm tuần hoàn: Nêu qua định nghĩa, ví dụ là các hàm số lượng giác. Trong phạm vi chương trình chủ yếu là xem có số T = 0(T > 0) nào đó thỏa mãn 6 f (x + T) = f (x) mà không đi sâu vào việc tìm chu kỳ (số T > 0 bé nhất). 6. Hàm hợp: định nghĩa và ví dụ. 7. Hàm ngược: (a) Định nghĩa (b) Mối quan hệ giữa đồ thị của hai hàm (c) Định lý về điều kiện đủ để tồn tại hàm ngược, (tăng hay giảm) (d) Trên cơ sở định lý trên xây dựng các hàm số lượng giác ngược và vẽ đồ thị của x chúng. Ở phổ thông học sinh đã biết y = a , y = loga x là các hàm ngược của nhau 8. Hàm số sơ cấp 6
  8. 3. Định nghĩa hàm số, tập xác định, tập giá trị và các khái niệm: hàm chẵn, hàm lẻ, hàm tuần hoàn, hàm hợp, hàm ngược 7 (a) Nêu các hàm số sơ cấp cơ bản: α x y = x , y = a , y = loga x, y = sin x, y = cos x, y = tg x, y = cotg x y = arcsin x, y = arccos x, y = arctg x, y = arccotg x. (b) Định nghĩa hàm số sơ cấp: Nêu ví dụ về 3 lớp hàm sơ cấp: đa thức, phân thức hữu tỷ, hyperbolic. 3.1 Bài tập Bài tập 1.1. Tìm TXĐ của hàm số 2x a) y = 4 lg(tan x) b) y = arcsin 1 + x q√x c) y = d) y = arccos(2sin x) sin πx Lời giải. a. TXĐ = π/4 + kπ x π/2 + kπ, k Z b. TXĐ = 1/3 x 1 { ≤ ≤ ∈ } {− ≤ ≤ } π π c. TXĐ = x 0, x Z d. TXĐ = + kπ x + kπ, k Z { ≥ 6∈ } {− 6 ≤ ≤ 6 ∈ } Bài tập 1.2. Tìm miền giá trị của hàm số x a. y = lg(1 2 cos x) b. y = arcsin lg − 10   Lời giải. a. MGT = ∞ y lg3 b. MGT = π/2 y π/2 {− ≤ ≤ } {− ≤ ≤ } Bài tập 1.3. Tìm f (x) biết 1 1 x a. f x + = x2 + b. f = x2. x x2 1 + x     x 2 Lời giải. a.ĐS: f (x)= x2 2 với x 2. b. ĐS: f (x)= x = 1. − | |≥ 1 x ∀ 6  −  Bài tập 1.4. Tìm hàm ngược của hàm số (trên miền mà hàm số có hàm ngược) 1 x 1 a. y = 2x + 3. b. y = − c. y = (ex + e x) 1 + x 2 − 1 3 Lời giải. a)ĐS: y = x 2 − 2 1 x b) ĐS: y = y = − 1 + x 7
  9. 8 Chương 1. Hàm số một biến số (13LT+13BT) 1 c) Ta có y = (ex e x) nên hàm số đã cho không là một đơn ánh. Ta phải xét trên 2 0 2 − − miền: 1 Trên miền x 0, từ y = (ex + e x) ex = y y2 1 x = ln(y + y2 1). Ta ≥ 2 − ⇒ ± − ⇒ − có song ánh: p p [0, +∞) [1, +∞) → 1 x x x y = (e + e− ) 7→ 2 ln(y + y2 1) y − ← q Vậy hàm ngược trên miền x 0 là y = ln(x + √x2 1), x 1. ≥ − ≥ Trên miền x 0, tương tự ta có hàm ngược là y = ln(x √x2 1), x 1. ≤ − − ≤ Bài tập 1.5. Xét tính chẵn lẻ của hàm số x x a. f (x)= a + a− (a > 0) b. f (x)= ln(x + √1 x2) − c. f (x)= sin x + cos x Lời giải. a. ĐS: hàm số đã cho là hàm số chẵn. b. ĐS: hàm số đã cho là hàm số lẻ. c. ĐS: hàm số đã cho không chẵn, không lẻ. Bài tập 1.6. Chứng minh rằng bất kì hàm số f (x) nào xác định trong một khoảng đối xứng ( a, a) cũng đều biểu diễn được duy nhất dưới dạng tổng của một hàm số chẵn và − một hàm số lẻ. Lời giải. Với mỗi f (x) bất kì ta luôn có 1 1 f (x)= [ f (x)+ f ( x)] + [ f (x) f ( x)] 2 − 2 − − g(x) h(x) | {z } | {z } trong đó g(x) là một hàm số chẵn, còn h(x) là một hàm số lẻ. Bài tập 1.7. Xét tính tuần hoàn và chu kì của hàm số sau (nếu có) a. f (x)= A cos λx + B sin λx 8
  10. 3. Định nghĩa hàm số, tập xác định, tập giá trị và các khái niệm: hàm chẵn, hàm lẻ, hàm tuần hoàn, hàm hợp, hàm ngược 9 1 1 b. f (x)= sin x + sin2x + sin3x 2 3 c. f (x)= sin2 x d. f (x)= sin(x2) Lời giải. a) Giả sử T > 0 là một chu kì của hàm số đã cho. Khi đó f (x + T)= f (x) x R ∀ ∈ A cos λ(x + T)+ B sin λ(x + T)= A cos λx + B sin λx x R ⇔ ∀ ∈ A[cos λx cos λ(x + T)] + B[sin λx sin λ(x + T)] = 0 x R ⇔ − − ∀ ∈ λT λT λT 2sin − [A sin(λx + )+ B cos(λx + )] = 0 x R ⇔ 2 2 2 ∀ ∈ λT sin = 0 ⇔ 2 2kπ T = . ⇔ λ 2π Vậy hàm số đã cho tuần hoàn với chu kì T = . λ | | b. Theo câu a) thì hàm số sin x tuần hoàn với chu kì 2π, hàm số sin2x tuần hoàn với 2π 1 1 chu kì π, hàm số sin3x tuần hoàn với chu kì . Vậy f (x)= sin x + sin2x + sin3x 3 2 3 tuần hoàn với chu kì T = 2π 1 cos 2x c. f (x)= sin2 x = − tuần hoàn với chu kì T = π 2 d. Giả sử hàm số đã cho tuần hoàn với chu kì T > 0.Khi đó sin(x + T)2 = sin(x2) x. ∀ 1. Cho x = 0 T = √kπ, k Z, k > 0. ⇒ ∈ 2. Cho x = √π k là số chính phương. Giả sử k = l2, l Z, l > 0. ⇒ ∈ π 3. Cho x = ta suy ra điều mâu thuẫn. 2 r Vậy hàm số đã cho không tuần hoàn. Bài tập 1.8. Cho f (x)= ax + b, f (0)= 2, f (3)= 5. Tìm f (x). − − 7 Lời giải. ĐS: f (x)= x 2. 3 − Bài tập 1.9. Cho f (x)= ax2 + bx + c, f ( 2)= 0, f (0)= 1, f (1)= 5. Tìm f (x). − 9
  11. 10 Chương 1. Hàm số một biến số (13LT+13BT) 7 17 Lời giải. ĐS: f (x)= x2 + x + 1. 6 6 1 Bài tập 1.10. Cho f (x)= (ax + a x), a > 0. Chứng minh rằng : 2 − f (x + y)+ f (x y)= 2 f (x) f (y). − Bài tập 1.11. Giả sử f (x)+ f (y)= f (z). Xác định z nếu: a. f (x)= ax, a = 0. b. f (x)= arctan x 6 1 1 + x c. f (x)= d. f (x)= lg x 1 x − Lời giải. x + y a. ĐS: z = x + y b. ĐS: z = 1 xy − xy x + y c. ĐS: z = d. ĐS: z = x + y 1 + xy §4. DÃY SỐ Định nghĩa dãy số, các khái niệm về dãy đơn điệu, bị chặn, giới hạn và các phép toán. Các tiêu chuẩn tồn tại giới hạn (tiêu chuẩn kẹp, tiêu chuẩn đơn điệu, tiêu chuẩn Cauchy). 1. Nhắc lại định nghĩa dãy số và các khái niệm về dãy bị chặn, đơn điệu 2. Định nghĩa giới hạn dãy số và nêu một ví dụ. Các khái niệm về dãy số hội tụ, phân kỳ. Nêu tính chất giới hạn nếu có là duy nhất, mọi dãy hội tụ đều bị chặn. 3. Các phép toán 4. Ý tưởng về giới hạn ∞ 5. Các tiêu chuẩn hội tụ (a) Đơn điệu bị chặn, ví dụ mô tả số e. (b) Tiêu chuẩn kẹp (c) Định nghĩa dãy Cauchy, tiêu chuẩn Cauchy. Nêu ví dụ dãy (an): 1 1 1 a = 1 + + + + phân kỳ. n 2 3 ··· n 10
  12. 4. Dãy số 11 4.1 Bài tập Bài tập 1.12. Tìm giới hạn của các dãy số sau: a. x = n n2 n b. x = n(n + a) n c. x = n + 3 1 n3 n − − n − n − n pnπ qsin2 n cos3 n p d. x = sin e. x = − n 2 2 n n 1 a Lời giải. a.ĐS: b. ĐS: c. ĐS: 0 d.ĐS:phânkì e.ĐS: 0 2 2 1 Bài tập 1.13. Xét dãy số xn = xn 1 + , x0 = 1. − xn 1 − a. Chứng minh rằng dãy x không có giới hạn hữu hạn. { n} b. Chứng minh rằng lim xn =+∞. n ∞ → 1 Bài tập 1.14. Xét u = (1 + )n.Chứng minh rằng u là một dãy số tăng và bị chặn. n n { n} Lời giải. Áp dụng bất đẳng thức Cauchy ta có : 1 1 + 1 1 + (1 + )+ + (1 + ) (n + 1) n 1 (1 + )n. n n ≥ r n 1 1 (1 + )n+1 (1 + )n ⇒ n + 1 ≥ n Hơn nữa ta có 1 n 1 = ( + )n = k un 1 ∑ Cn. k n k=0 n k 1 k! = 1.2 k 2 − k 2 ≥ ∀ ≥ 1 n.(n 1) (n k + 1) 1 1 1 Ck = < n. k − − . k k 1 ⇒ n k! n k! ≤ 2 − 1 1 1 < + + + + + < un 1 1 2 k 1 3. ⇒ 2 2 2 − 1 1 Bài tập 1.15. Cho s = 1 + + + .Chứng minh rằng s tăng và bị chặn. n 1! n! { n} Lời giải. Chú ý : lim un = lim sn = e. n +∞ n +∞ → → 1 + a + + an Bài tập 1.16. Tính lim ; a < 1, b < 1. n +∞ 1 + b + + bn → | | | | 11
  13. 12 Chương 1. Hàm số một biến số (13LT+13BT) Lời giải. 1 + a + + an 1 an+1 1 b 1 b lim = lim − . − = − n +∞ 1 + b + + bn n +∞ 1 a 1 bn+1 1 a → → − − − Bài tập 1.17. Tính lim 2 + 2 + + √2 (n dấu căn). n +∞ → q p Lời giải. Đặt u = 2 + 2 + + √2 ta có u2 = 2 + u . Trước hết chứng minh u n n+1 n { n} là một dãy số tăng vàq bị chặn,p 0 un 2. Theo tiêu chuẩn đơn điệu bị chặn, un là một ≤ ≤ 2 { } dãy số hội tụ. Giả sử lim un = a,0 − 0 < < . 2 ⇒ 2n n 1 − Dùng nguyên lý kẹp ta có điều phải chứng minh. 12
  14. 5. Giới hạn hàm số 13 2n Bài tập 1.21. Chứng minh rằng lim = 0. n +∞ n! → Lời giải. Ta có 2n 2 2 2 2 2 0 0. n +∞ n +∞ → → n(n 1) 2 Lời giải. Đặt α = √n n 1 n = (1 + α )n > − α2 α2 1,1 √n a √n n n > a lim √n a = 1 n +∞ ≤ ≤ ∀ ⇒ → 1 0 n thì lim √a1.a2 an = a. n +∞ n +∞ → ∀ → 13
  15. 14 Chương 1. Hàm số một biến số (13LT+13BT) §5. GIỚI HẠN HÀM SỐ 1. Định nghĩa giới hạn hàm số (a) Nêu các định nghĩa: lim f (x) trong quá trình + x x , x x , x x−, x ∞ → o → o → o → (b) Tính duy nhất của giới hạn 2. Các phép toán 3. Giới hạn của hàm hợp: Nếu có lim u(x) = uo, lim f (u) = f (uo) và có hàm hợp f (u(x)) thì lim f (u(x)) = x x u u x x → o → o → o f (uo). lim B(x) ln A(x) B(x) x xo Áp dụng lim A(x) = e → . x x → o 4. Giới hạn vô cùng Bài tập 1.27. Tính x100 2x + 1 0 a. lim − x 1 x50 2x + 1 0 → −   (xn an) nan 1(x a) 0 b. lim − − − − x a (x a)2 0 → −   Pn(x) (x x0).Pn 1(x) Pn 1(x) TQ : Pn(x0)= Qm(x0)= 0. lim = lim − − = lim − . x x0 Qm(x) x x0 (x x0).Qm 1(x) x x0 Qm 1(x) → → − − → − 49 n(n 1) Lời giải. a.ĐS: b. ĐS: − .an 2 24 2 − Bài tập 1.28. Tìm giới hạn x + x + √x ∞ √x a. lim ĐS : = 1 x +∞ q √px + 1 ∞ ∼ √x →   b. lim (√3 x3 + x2 1 x) (∞ ∞) x +∞ → − − − Lời giải. a. x + x + √x √x lim = lim = 1 x +∞ q √ √ → px + 1 x b. 2 3 x 1 1 lim ( x3 + x2 1 x)= lim − = x +∞ − − x ∞ 3 (x3 + x2 1)2 + x√3 x3 + x2 1 + x2 3 → p → − − p 14
  16. 6. Vô cùng lớn, vô cùng bé 15 §6. VÔ CÙNG LỚN, VÔ CÙNG BÉ 6.1 Vô cùng bé (VCB) 1. Định nghĩa; nêu mối liên hệ lim f (x)= ` f (x)= ` + α(x); x a → ⇐⇒ trong đó α(x) VCB trong quá trình x a. Phân biệt với khái niệm rất bé. − → 2. Một số tính chất: (a) Tổng hai VCB (đối với một VCB người ta không quan tâm đến dấu của nó). (b) Tích của VCB với một đại lượng bị chặn. (c) Tích các VCB. 3. So sánh các VCB trong cùng một quá trình (a) VCB cùng bậc, VCB tương đương Nêu các công thức thay tương đương hay dùng trong quá trình x 0 → x sin x tan x arcsin x arctan x ∼ ∼ ∼ ∼ ax 1 ex 1 − ln(a + x) ∼ − ∼ ln a ∼ 1 αx √m 1 + αx 1 ln √m 1 + αx = ln (1 + αx) − ∼ m ∼ m x2 1 cos x . − ∼ 2 (b) Vô cùng bé bậc cao i. Định nghĩa ii. Hiệu hai VCB tương đương iii. Tích hai VCB 4. Qui tắc ngắt bỏ các VCB và qui tắc thay tương đương (a) Nếu α α, β β thì ∼ ∼ α α lim = lim ; lim (α.γ) = lim (α.γ) β β α + α1 α (b) Nếu α1 = o (α) , β1 = o (β) thì lim = lim β + β1 β 15
  17. 16 Chương 1. Hàm số một biến số (13LT+13BT) 5. Ứng dụng khử một số dạng vô định Chú ý: Học sinh hay nhầm Thay tương đương khi có hiệu hai VCB • Nếu f là một hàm, α α = f (α) f (α). • ∼ 6 ⇒ ∼ 6.2 Vô cùng lớn (VCL) 1. Định nghĩa 2. Mối liên hệ giữa VCB và VCL. Từ đó suy ra các kết quả tương tự như đối với các VCB. 3. Qui tắc thay tương đương và ngắt bỏ VCL. ∞ 4. Ứng dụng khử dạng . ∞ Chú ý: Còn tồn đọng một số dạng vô định, ví dụ x sin x lim − ; lim xsin x; x 0 x3 x 0+ → → 6.3 Bài tập Bài tập 1.29. Tìm giới hạn √m 1 + αx n 1 + βx 0 a. lim − x 0 x 0 → p   √m 1 + αx. n 1 + βx 1 0 b. lim − x 0 x 0 → p   Lời giải. a. √m 1 + αx n 1 + βx √m 1 + αx 1 n 1 + βx 1 − = − − x p x − p x α β Vì √m 1 + αx 1 x, n 1 + βx 1 x, nên − ∼ m − ∼ n p √m 1 + αx n 1 + βx α β lim − = x 0 x m − n → p b. √m 1 + αx. n 1 + βx 1 n 1 + βx 1 √m 1 + αx 1 α β lim − = lim √m 1 + αx. − + − = + x 0 x x 0 x x m n → p → p ! 16
  18. 6. Vô cùng lớn, vô cùng bé 17 Bài tập 1.30. Tìm giới hạn sin x sin a 0 a. lim − b. lim (sin √x + 1 sin √x) x a x a 0 x +∞ − → −   → √cos x √3 cos x 0 1 cos x cos 2x cos 3x 0 c. lim − d. lim − x 0 sin2 x 0 x 0 1 cos x 0 →   → −   1 Lời giải. a.ĐS: cos a b.ĐS:0 c.ĐS: − d. ĐS : 14 12 Bài tập 1.31. Tìm giới hạn x 1 2 x−+1 x 1 1 ∞ a. lim − b. lim (cos √x) x (1 ) x ∞ x2 + 1 x 0+ →   → c. lim [sin(ln(x + 1)) sin(ln x)] d. lim n2(√n x n+√1 x), x > 0 x ∞ n ∞ → − → − x 1 x2 1 x+−1 Lời giải. a) Đây không phải là dạng vô định, lim − = 1. x ∞ x2 + 1 →   lim B(x) ln A(x) B(x) x x b) Áp dụng công thức lim A(x) = e → 0 . x x → 0 1 ln cos √x sin √x 1 lim ln cos √x x = lim = lim − = (L’Hospital) x 0+ x 0+ x x 0+ 2√x −2 → → →  nên 1 1 x lim ln cos √x = e− 2 x 0+ →  c) ĐS: 0. d) lim n2(√n x n+√1 x), x > 0 n ∞ → − 2 1 1 = lim n (x n x n+1 ) n ∞ → − 1 1 = lim n2x n+1 (x n(n+1) 1) n ∞ − → 1 n(n+1) 2 1 x 1 1 = lim n x n+1 . − . n ∞ 1 n(n + ) → 1 n(n + 1) 1 n 1 x n(n+1) 1 = lim .x n+1 . − n ∞ n + 1 → 1 n(n + 1) = ln x 17
  19. 18 Chương 1. Hàm số một biến số (13LT+13BT) Bài tập 1.32. Khi x 0 cặp VCB sau có tương đương không ? → α(x)= x + √x và β(x)= esin x cos x − q Lời giải. ĐS: β(x)= o(α(x)) Bài tập 1.33. Tìm giới hạn lim B(x) ln A(x) B(x) x x Áp dụng lim A(x) = e → 0 . x x → 0 1 ∞ tg x ∞ a. lim (1 2x) x (1 ) b. lim (sin x) (1 ) x 0+ − x π → → 2 1 sin x 1 + tg x sin x sin x x sin x c. lim (1∞) d. lim − (1∞) x 0 1 + sin x x 0 x →   →   Thay tương đương : eαx eβx 0 eαx eβx 0 e. lim − f. lim − x 0 x 0 x 0 sin αx sin βx 0 →   → −   ax xa 0 g. lim − x a x a 0 → −   Lời giải. 2 a. ĐS: e− b. ĐS: 1 c. ĐS: 1 d. ĐS: e e. ĐS: α β f. ĐS: 1 g. ĐS: aa(ln a 1) − − §7. HÀM SỐ LIÊN TỤC 1. Định nghĩa: Cho f (x) xác định trong một lân cận nào đó của xo (xác định cả tại xo) nếu có lim = f (xo) x x → o ( ε > 0, δ(ε, x ) > 0: x, x x < δ ta có f (x) f (x ) < ε) . ∀ ∃ o ∀ | − o| | − o | 2. Liên tục một phía và mối quan hệ với liên tục. 3. Các khái niệm hàm liên tục trên một khoảng, một đoạn. Hình ảnh hình học. 4. Các phép toán số học đối với các hàm số cùng liên tục (tại xo, bên phải xo, bên trái xo). 5. Sự liên tục của hàm ngược 18
  20. 7. Hàm số liên tục 19 Định lý 1.1. (Sự liên tục của hàm ngược) Nếu X là một khoảng, y = f (x) đồng biến (nghịch biến) liên tục trên X. Khi đó có hàm ngược y = g(x) cũng đồng biến (nghịch biến) và liên tục trên f (X). Ví dụ: Các hàm số lượng giác ngược là liên tục trên tập xác định của chúng. 6. Sự liên tục của hàm hợp Suy ra kết quả: X-khoảng, đoạn, nửa đoạn. Mọi hàm số sơ cấp xác định trên X thì liên tục trên X. 7. Các định lý về hàm liên tục Định lý 1.2. Nếu f (x) liên tục trên khoảng (a, b) mà giá trị f (x ), x (a, b) dương o o ∈ (hay âm) thì tồn tại một lân cận U(x ) sao cho x U(x ), f (x) cũng dương hay âm. o ∀ ∈ o Hình ảnh hình học. Định lý 1.3. Nếu f (x) liên tục trên đoạn [a, b] thì nó bị chặn trên đoạn đó. Hình ảnh hình học. Định lý 1.4. Nếu f (x) liên tục trên đoạn [a, b] thì nó đạt được GTLN, NN trên đoạn này. Hình ảnh hình học. * Liên tục đều, hình ảnh hình học của liên tục đều. Định lý 1.5. (Định lý Cantor) Nếu f (x) liên tục trên [a, b] thì nó liên tục đều trên đó (thay [a, b] bằng khoảng (a, b) thì định lý không còn đúng). Mô tả hình học. Định lý 1.6. (Định lý Cauchy) Nếu f (x) liên tục trên đoạn [a, b] và có f (a). f (b) < 0 thì α (a, b) để f (α)= 0. ∃ ∈ Nêu một ví dụ, nêu ứng dụng dùng để thu hẹp khoảng nghiệm của phương trình. Hình ảnh hình học. Corollary 1.1. Nếu f (x) liên tục trên đoạn [a, b] , A = f (a) = B = f (b) thì nó nhận 6 mọi giá trị trung gian giữa A và B. Corollary 1.2. Cho f (x) liên tục trên [a, b] , m, M lần lượt là các GTNN, LN của hàm số trên đoạn này thì [m; M] là tập giá trị của hàm số. 8. Điểm gián đoạn của hàm số 19
  21. 20 Chương 1. Hàm số một biến số (13LT+13BT) (a) Định nghĩa: Nếu hàm số không liên tục tại điểm xo thì ta nói nó gián đoạn tại xo; xo gọi là điểm gián đoạn của hàm số. Hình ảnh hình học (đồ thị không liền nét tại điểm gián đoạn). Như vậy nếu x là điểm gián đoạn của f (x) thì hoặc x MXĐ hoặc x MXĐ o o 6∈ o ∈ nhưng không xảy ra lim f (x) = f (xo), x xo theo nghĩa (cả hai phía hay một x x → o → phía). Ở đây ta quan tâm đến X như là một khoảng, nửa khoảng hay một đoạn. Do x MXĐ của f (x) nên có thể có rất nhiều điểm gián đoạn, ta chỉ quan tâm o 6∈ đến những điểm gián đoạn thuộc tập xác định hay là những điểm đầu mút của khoảng xác định. (b) Phân loại điểm gián đoạn Giả sử xo là điểm gián đoạn của f (x) i. Điểm gián đoạn loại 1: + Nếu lim f (x) = f (x ) và lim f (x)= f (x ) thì xo được gọi là điểm gián + o o− ∃ x x x x− → o → o đoạn loại 1 của hàm số f (x). Giá trị f (x+) f (x ) gọi là bước nhảy của | o − o− | hàm số. + Đặc biệt: nếu f (xo ) = f (xo−) thì xo được gọi là điểm gián đoạn bỏ được của hàm số. Khi đó nếu hàm số chưa xác định tại xo thì ta có thể bổ sung thêm giá trị của hàm số tại xo để hàm số liên tục tại điểm xo. Còn nếu hàm số xác định tại điểm xo thì ta có thể thay đổi giá trị của hàm số tại điểm này để hàm số liên tục tại xo. ii. Điểm gián đoạn loại 2: Nếu xo không là điểm gián đoạn loại 1 thì ta nói nó là điểm gián đoạn loại 2. (c) Chú ý: Với quan điểm xem điểm gián đoạn bỏ được là trường hợp đặc biệt của điểm gián đoạn loại 1 với xo là điểm gián đoạn (đầu mút của khoảng hay đoạn) của f (x), mà có lim f (x) hữu hạn thì ta cũng xem xo là điểm gián đoạn bỏ được x x → o của hàm số. (d) Các ví dụ. 7.1 Bài tập Bài tập 1.34. Tìm a để hàm số liên tục tại x = 0 a/ 1 cos x − nếu x = 0 f (x)= x 6 a nếu x = 0   20
  22. 7. Hàm số liên tục 21 1 ĐS : a = 2 b/ ax2 + bx + 1 nếu x 0 g(x)= ≥ a cos x + b sin x nếu x < 0  ĐS : a = 1  Bài tập 1.35. Điểm x = 0 là điểm gián đoạn loại gì của hàm số 8 sin 1 eax ebx a. b. x c. y = cotg x y = 1 y = − 1 2 e x 1 x − − Gợi ý & Đáp số. a.ĐS:LoạiI b.ĐS:LoạiII c.ĐS:bỏđược Bài tập 1.36. Xét sự liên tục của các hàm số sau a/ x sin 1 nếu x = 0 f (x)= x 6 0 nếu x = 0  ĐS : liên tục.  b/ 1 e− x2 nếu x = 0 f (x)= 6 0 nếu x = 0  ĐS : liên tục.  c/ sin πx nếu x vô tỉ f (x)= 0 nếu x hữu tỉ  ĐS : gián đoạn.  21
  23. 22 Chương 1. Hàm số một biến số (13LT+13BT) Bài tập 1.37. Chứng minh rằng nếu f , g là các hàm số liên tục trên [a, b] và f (x) = g(x) với mọi x là số hữu tỉ trong [a, b] thì f (x)= g(x) x [a, b]. ∀ ∈ Bài tập 1.38. Chứng minh rằng phương trình x5 3x 1 có ít nhất một nghiệm trong − − (1,2). Bài tập 1.39. Cho f (x) = ax2 + bx + c, biết 2a + 3b + 6c = 0. Chứng minh rằng f (x) có ít nhất một nghiệm trong (0,1). Bài tập 1.40. Chứng minh rằng nếu f : [0,1] [0,1] liên tục thì tồn tại x [0,1] sao cho → 0 ∈ f (x0)= x0. Bài tập 1.41. Chứng minh rằng mọi đa thức bậc lẻ với hệ số thực đều có ít nhất một nghiệm thực. §8. ĐẠO HÀM VÀ VI PHÂN 1. Định nghĩa đạo hàm (a) Nêu lại định nghĩa đạo hàm, ý nghĩa hình học, cơ học (b) Đạo hàm một phía, mối quan hệ giữa đạo hàm và đạo hàm trái, phải, mối quan hệ giữa đạo hàm và liên tục. 2. Các phép toán 3. Đạo hàm của hàm hợp: có chứng minh [ f (u(x))]0 = fu0 .u0x. Ý tưởng chứng minh: ta có 0 u (xo + ∆x) = u (xo) + u (xo) ∆x + o (∆x) f [u (x + ∆x)] f [u (x )] = f u + u0 (x )∆x + o (∆x) f (x ) = f 0 (u ) .δ + o δ o − o  o o  − o u o y y  δy   f [u (x + ∆x)] f [u(x )]  = lim o − o | {z } ⇒ ∆x 0 ∆x → 4. Đạo hàm của hàm ngược: Dùng 1 trong 2 định lý sau (có chứng minh) Định lý 1.7. Nếu x = ϕ (y) có đạo hàm tại y và ϕ0 (y ) = 0, có hàm ngược y = f (x) o o 6 và hàm ngược này liên tục tại xo = ϕ (yo), suy ra nó có đạo hàm tại điểm xo và 1 f 0 (xo) = . ϕ0 (yo) 22
  24. 8. Đạo hàm và vi phân 23 Định lý 1.8. Nếu x = ϕ(y) có đạo hàm và y và ϕ0 (y ) = 0, biến thiên đơn điệu o o 6 trong lân cận điểm yo thì nó sẽ tồn tại hàm ngược y = f (x) và hàm này cũng có đạo 1 hàm tại điểm xo, f 0 (xo)= . ϕ0 (yo) Từ đó xây dựng công thức đạo hàm của các hàm số lượng giác ngược. 5. Bảng đạo hàm cơ bản Nêu ý tưởng tính đạo của các hàm số sơ cấp và các hàm số cho dưới dạng nhiều biểu thức giải tích. 6. Vi phân của hàm số (a) Định nghĩa i. Nêu định nghĩa ∆ f = A.∆x + o (∆x) ii. Nêu ý nghĩa: biểu thức df (xo) = A.∆x là tuyến tính với ∆x nên tính nó đơn giản. (b) Mối liên hệ giữa đạo hàm và vi phân, từ đó suy ra df (xo) = f 0 (xo) .∆x. Lập luận suy ra ∆x = dx = df (x ) = f 0 (x )dx. ⇒ o o (c) Tính bất biến của dạng thức vi phân (cấp 1) d Ví dụ: Tính x3 2x6 x9 . d (x3) − − (d) Ý nghĩa hình học của vi phân  y y = f (x) yo + ∆y T df (xo)= MT Mo yo b M O xo xo + ∆x x (e) Ứng dụng tính gần đúng, nêu một ví dụ. (f) Qui tắc lấy vi phân 7. Đạo hàm và vi phân cấp cao: (a) Đạo hàm cấp cao: Định nghĩa, ý nghĩa cơ học của đạo hàm cấp 2; • 23
  25. 24 Chương 1. Hàm số một biến số (13LT+13BT) Các phép toán (Công thức Leibniz chỉ nói phương pháp chứng minh). • (u + v)(n) = u(n) + v(n) n (n) n (n k) (k) (u.v) = ∑ Ck .u − .v k=0 Các ví dụ về đạo hàm cấp cao của các hàm: • 1 y = xα, y = , y = sin (ax + b) , x + a y = cos (ax + b) , y = eax, y = x2 + 1 ex, y = ex sin x.   Đạo hàm cấp cao của một số hàm số cơ bản: (xα)(n) = α(α 1) (α n + 1)xα n • − − − [(1 + x)α](n) = α(α 1) (α n + 1).(1 + x)α n • − − − 1 (n) n! = ( 1)(n). • 1 + x − (1 + x)n+1   1 (n) n! = • 1 x (1 x)n+1  −  − (sin x)(n) = sin x + nπ • 2 (cos x)(n) = cos x + nπ • 2  (ax)(n) = ax. (ln a)n •  (n 1)! (ln x)(n) = ( 1)n 1. − • − − xn (b) Vi phân cấp cao: Định nghĩa • Biểu thức của vi phân cấp cao • Các phép toán • Dạng thức của vi phân cấp cao không còn đúng đối với hàm hợp. • 8.1 Bài tập Bài tập 1.42. Tìm đạo hàm của hàm số 1 x khi x 2 −   24
  26. 8. Đạo hàm và vi phân 25 Bài tập 1.43. Với điều kiện nào thì hàm số xn.sin 1 khi x = 0 f (x)= x 6 0 khi x = 0   a. liên tục tại x = 0 b. khả vi tại x = 0 c. có đạo hàm liên tục tại x = 0 Gợi ý & Đáp số. a. ĐS: n > 0 b. ĐS: n > 1 c. ĐS: n > 2 Bài tập 1.44. Chứng minh rằng hàm số f (x)= x a .ϕ(x), trong đó ϕ(x) là một hàm số | − | liên tục và ϕ(a) = 0, không khả vi tại điểm x = a. 6 Lời giải. f+0 (a)= ϕ(a) = f 0 (a)= ϕ(a) 6 − − Bài tập 1.45. Tìm vi phân của hàm số 1 x x a. y = arctg (a = 0) b. y = arcsin (a = 0) a a 6 a 6 1 x a c. y = .ln − (a = 0) d. y = ln x + x2 + a 2a | x + a | 6 | | p Gợi ý & Đáp số. dx dx a. dy = b. dy = .(sign a) a2 + x2 √a2 x2 dx dx− c. dy = d. dy = x2 a2 √x2 + a − Bài tập 1.46. Tìm d d sin x d(sin x) a. I = (x3 2x6 x9) b. J = ( ) c. K = d(x3) − − d(x2) x d(cos x) Gợi ý & Đáp số. 1 sin x a. I = 3x6 4x3 + 1 b. J = cos x c. K = cotg x, x = kπ, k Z − − 2x2 − x − 6 ∈   Bài tập 1.47. Tính gần đúng giá trị của biểu thức 2 0,02 a. lg11 b. 7 − 2 + 0,02 r 25
  27. 26 Chương 1. Hàm số một biến số (13LT+13BT) 1 Lời giải. a) Xét f (x)= lg x, x = 10, x = 1, ta có lg11 lg10 + = 1, 043 0 4 ≈ 10ln10 2 0,02 4 4 b) 7 − = 7 1. Xét f (x)= 7 1, x = 2, x = 0,02 2 + 0,02 2 + 0,02 − x − 0 4 Tar có r r 7 4 1 4 6 4 1 −7 f (x + x)= 1 + 0, 02. .( 1) .−2 = 1 0, 02. = 4 r2 − 7 2 − 2 − 7 Bài tập 1.48. Tìm đạo hàm cấp cao của hàm số x2 1 + x a. y = , tính y(8) b. y = , tính y(100) 1 x √1 x − − c. y = x2.ex, tính y(10) d. y = x2.sin x, tính y(50) Gợi ý & Đáp số 8! 197! a. y(8) = , x = 1 b. y(100) = (399 x), x < 1 (1 x)9 6 2100(1 x)100√1 x − − − − 45 c. y(10) = 210e2x(x2 + 10x + ) d. y(50) = x2 sin x + 100x cos x + 2450 sin x 2 − Bài tập 1.49. Tính đạo hàm cấp n của hàm số x 1 a. y = b. y = x2 1 x2 3x + 2 −x − c. y = d. y = eax.sin(bx + c) √3 1 + x ( 1)n 1 1 Lời giải. a. y(n) = − n! + 2 (x 1)n+1 (x + 1)n+1  −  1 1 b. y(n) = n! (1 x)n+1 − (2 x)n+1  − −  ( 1)n 1 3n + 2x c. y(n) = − − (1.4 (3n 5)) , n 2, x = 1 n n+ 1 3 − (1 + x) 3 ≥ 6 d Tính y0 rồi dự đoán và chứng minh bằng quy nạp (n) n ax b a y = (a2 + b2) 2 e sin(bx + c + nϕ), ở đó, sin ϕ = , cos ϕ = √a2 + b2 √a2 + b2 26
  28. 8. Đạo hàm và vi phân 27 Bài tập 1.50. Tính đạo hàm cấp n của hàm số 1 1 1/ y = 2/ y = a + bx √a + bx 1 ax + b 3/ y = 4/ y = x2 x2 cx + d − 5/ y = sin2 x 6/ y = sin3 x 7/ y = sin ax.sin bx 8/ y = sin2 ax. cos bx 9/ y = sin4 x + cos4 x 10/y = x cos ax 11/ y = x2 cos ax 12/y = x2 sin ax a + bx 13/ y = ln a bx − (1.1) ( 1)n.n!bn Lời giải. 1/ y(n) = − (a + bx)n+1 ( 1)n.(2n 1)!!bn 2/ y(n) = − − 2n √n a + bx 1 1 1 ( 1)n.n! 1 n+1 1 n+1 3/ y = = ( 1 ) nên y(n) = − x2 x2 2a x a − x+a 2a x a − x + a − − " −    # ax + b a 1 1 1 ad ( 1)n.n! 4/ y = = + b ad nên y(n) = b − cx + d c c − c d c − c n+1 x + c d     x + c   1 1 5/ y = sin2 x = cos 2x nên y(n) = 2n 1 cos 2x + nπ 2 − 2 − − 2  6/ y = sin3 x = 3 sin x 1 sin3x nên y(n) = 3 sin x + nπ 1 3n sin 3x + nπ 4 − 4 4 2 − 4 2 7/ y = sin ax.sin bx = 1 [cos(a b)x cos(a + b)x] nên   2 − − 1 nπ 1 nπ y(n) = (a b)n cos (a b)x + (a + b)n cos (a + b)x + 2 − − 2 − 2 2 h i h i cos bx 8/ y = sin2 ax. cos bx = 1 [cos(2a + b)x + cos(2a b)x] nên 2 − 4 − 1 nπ 1 nπ 1 nπ y(n) = bn cos bx + (2a + b)n cos (2a + b)x + (2a b)n cos (2a b)x + 2 2 − 4 2 − 4 − − 2   h i h i 4 4 3 1 (n) n 1 nπ 9/ y = sin x + cos x = 4 + 4 cos 4x nên y = 4 − cos 4x + 2 (n) n nπ n 1 (n 1)π  10/ y = a x cos ax + 2 + na − cos ax + −2    27
  29. 28 Chương 1. Hàm số một biến số (13LT+13BT) ( ) nπ (n 1)π (n 2)π 11/ y n = anx2 sin ax + + 2nan 1x sin ax + − + n(n 1)an 2 sin ax + − 2 − 2 − − 2     ( ) nπ (n 1)π (n 2)π 12/ y n = anx2 cos ax + + 2nan 1x cos ax + − + n(n 1)an 2 cos ax + − 2 − 2 − − 2     (n 1)!bn  13/ y(n) = − . [(a + bx)n + ( 1)n(a bx)n] (a2 b2x2)n − − − §9. CÁC ĐỊNH LÝ VỀ HÀM KHẢ VI VÀ ỨNG DỤNG 9.1 Các định lý về hàm khả vi 1. Cực trị của hàm số: Nên dùng định nghĩa sau: Định nghĩa 1.1. Cho hàm số f (x) liên tục trên (a, b), ta nói hàm số đạt cực trị tại điểm x (a, b) nếu U(x ) (a, b) sao cho f (x) f (x ) không đổi dấu x o ∈ ∃ o ⊂ − o ∀ ∈ U(x ) x . o \ { o} Nếu f (x) f (x ) 0 thì ta nói hàm số đạt cực đại tại x . • − o o 2. Định lý Fermat (có chứng minh) Định lý 1.9. Cho f (x) liên tục trên khoảng (a, b), nếu hàm số đạt cực trị tại điểm x (a, b) và có đạo hàm tại x thì f 0 (x )= 0. o ∈ o o Có chứng minh và mô tả hình học, chú ý giả thiết liên tục ở đây là do định nghĩa cực trị. 3. Định lý Rolle: có chứng minh và mô tả hình ảnh hình học 4. Định lý Lagrange: Có chứng minh và mô tả hình ảnh hình học 5. Định lý Cauchy Chú ý: (a) Định lý Rolle là trường hợp riêng của định lý Lagrange, định lý Lagrange là trường hợp riêng của định lý Cauchy. Các giả thiết trong các định lý này là cần thiết. (b) Nêu dạng khác của định lý Lagrange: ∆ f = f 0 (x + θ∆x) , θ (0,1). o ∈ (c) Nên tìm một ví dụ hấp dẫn về định lý Lagrange. 28
  30. 9. Các định lý về hàm khả vi và ứng dụng 29 9.2 Qui tắc L’Hospital Qui ước nói một quá trình nào đó là hiểu + x x , x x , x x−, x +∞, x ∞, x ∞. → o → o → o → →− → 0 1. Qui tắc 1 khử dạng . 0   Nếu f (x) và g(x) là các VCB trong cùng một quá trình nào đó và trong chính quá f 0 (x) trình ấy ta có lim = A hữu hạn hay vô hạn thì trong quá trình ấy ta có g0 (x) f (x) lim = A. Ý tưởng chứng minh: g(x) (a) Nếu f (x) và g(x) liên tục trong lân cận điểm x , g0 (x ) = 0, x = x , o o 6 ∀ 6 o f (xo)= g(xo)= 0. Với x = x ta có 6 o f (x) f (x) f (x ) (Cauchy) f 0 (c) = − o = , g(x) g(x) g(x ) g0 (c) − o c nằm giữa x và xo. f 0 (x) Khi x xo thì c xo. Do lim = A, suy ra x x 0 → → → o g (x) f (x) f 0 (c) lim = lim = A. x xo g(x) c xo 0 → → g (c) (b) Nếu chỉ có lim f (x) = lim g(x) = 0 mà các hàm số chưa chắc đã xác định tại x x x x → o → o xo. Ta xây dựng 0, x = xo 0, x = xo F(x) = ; G(x)= .  f (x), x = x g(x), x = x  6 o  6 o 1  (c) Nếu x ∞, đặt y = . → x ∞ 2. Qui tắc 2 khử dạng . ∞ (Thay VCB bằng VCL trong qui tắc 1.) 3. Ví dụ 29
  31. 30 Chương 1. Hàm số một biến số (13LT+13BT) x sin x ax (a) lim − ; (d) lim ; x 0 3 x ∞ x → arcsin x → (b) lim xx; (e) x 0+ ··· → (c) lim xα ln x; x 0+ → Chú ý f (x) Hai qui tắc trên chỉ là điều kiện đủ để tìm lim . • g(x) 1 x2 sin Có thể nêu ví dụ lim x x 0 sin x → Trong quá trình tìm giới hạn có dạng vô định, nên kết hợp cả thay tương đương với • dùng qui tắc L’Hospital. Có thể dùng qui tắc L’Hospital nhiều lần. Bài tập 1.51. Chứng minh rằng phương trình xn + px + q với n nguyên dương không thể có quá 2 nghiệm thực nếu n chẵn và không thể có quá 3 nghiệm thực nếu n lẻ. Lời giải. Xét n chẵn, giả sử phương trình có 3 nghiệm thực x1 < x2 < x3, khi đó tồn tại c (x , x ), c (x , x ) sao cho f (c ) = f (c ) = 0. Tức là phương trình xn 1 = p có 2 1 ∈ 1 2 2 ∈ 2 3 0 1 0 2 − − n nghiệm thực, điều này mâu thuẫn do n chẵn. Xét n lẻ, giả sử phương trình có 4 nghiệm thực x1 < x2 < x3 < x4, khi đó theo định lý n 1 p Rolle, phương trình x − + n = 0 có 3 nghiệm thực, trong khi theo trên ta vừa chứng minh thì nó không thể có quá 2 nghiệm thực do n 1 chẵn. − f (b) f (a) f (c) Bài tập 1.52. Giải thích tại sao công thức Cauchy dạng − = 0 không áp g(b) g(a) g (c) − 0 dụng được với các hàm số f (x)= x2, g(x)= x3, 1 x 1 − ≤ ≤ Bài tập 1.53. Chứng minh các bất đẳng thức a b a a b a. sin x sin y x y b. − < ln < − ,0 b a | − |≤| − | a b b ≤ ≤ Lời giải. a. Xét hàm số f (t) = sin t, thoả mãn điều kiện của định lý Lagrange trong khoảng [x, y] bất kì. Khi đó c [x, y] sao cho ∃ ∈ sin x sin y = f 0(c).(x y)= cos c.(x y) sin x sin y x y − − − ⇒| − |≤| − | b. Xét hàm số f (x)= ln x, thoả mãn điều kiện của định lý Lagrange trong khoảng [b, a] nên b 1 a a b ln a ln b = f 0(c)(a b) ln = (b a) ln = − − − ⇒ a c − ⇒ b c Vậy a b a a b − < ln < − , do b < c < a. a b b 30
  32. 9. Các định lý về hàm khả vi và ứng dụng 31 Bài tập 1.54. Tìm giới hạn x 1 a. lim x + x + √x x (∞ ∞) b. lim (∞ ∞) x +∞ − − x 1 x 1 − ln x − → r q →  −  1 1 e x cos 0 ex sin x x(1 + x) 0 c. lim − x d. lim − x ∞ 1 0 x 0 x3 0 → 1 1 2   →   − − x πxq tg πx ∞ e. lim tg ln(2 x) (∞.0) f. lim 2 x 1 2 − x 1 ln(1 x) ∞ → → − − sin x 0 2 1  ∞ g. lim x (0 ) h. lim(1 a tg x) x sin x (1 ) x 0+ x 0 − → → i. lim(1 cos x)tg x (00) k. lim (sin x)tg x (1∞) x 0 − x π → → 2 Gợi ý & Đáp số. 1 1 a. nhân liên hợp, ĐS: b. quy đồng, L’Hospital, ĐS: 2 2 1 c. Dùng khai triển Taylor, ĐS: ∞ d. khai triển Taylor hoặc L’Hospital, ĐS: 3 2 e. L’Hospital, ĐS: f. L’Hospital, ĐS: ∞ π − B(x) lim B(x) ln A(x) B(x) lim B(x) ln A(x) a g. Ad lim A(x) = e , ĐS: 1 h. Ad lim A(x) = e , ĐS: e− i. Ad lim A(x)B(x) = elim B(x) ln A(x), ĐS: 1 k. Ad lim A(x)B(x) = elim B(x) ln A(x), ĐS: 1 Bài tập 1.55. Tính các giới hạn sau 1 1 1 sin x x cos x a. lim [x x2 ln(x + )] b. lim cotg x = − x ∞ − x x 0 x x − x2 sin x → →   1 ex 5 3 2 2 c. lim x− [sin(sin x) x. 1 x ] d. lim[ln(1 + x) x ] x 0 − − x 0 − x → → x2 p cos x e 2 x ln(1 + x) e. lim − − f. lim − x 0 x4 x 0 x2 → → 1 1 sin x x tg x x g. lim = − h. lim − x 0 x − sin x x sin x x 0 x sin x →   →  −  1 cos2 x 1 1 i. lim − j. lim x 0 x sin2x x 0 x − ex 1 →   →  −  2 arctg x k. lim ( arctg x)x l. lim x +∞ π x 0 sin x x → → ln x sin x − x cos x m. lim n. lim − x 0+ 1 + 2ln(sin x) x 0 x3 → → x2 ln(cos ax) o. lim p. lim , a = 0, b = 0 x 0 √1 + x sin x √cos x x 0 ln(cos bx) 6 6 → − → 31
  33. 32 Chương 1. Hàm số một biến số (13LT+13BT) Gợi ý & Đáp số. 1 1 a. ĐS: b. Ad khai triển Taylor, ĐS: 2 3 7 3 c. ĐS: d. Ad khai triển Taylor, ĐS: 45 − 2 1 1 e. Ad khai triển Taylor, ĐS: f. Khai triển Taylor, hoặc L’Hospital, ĐS: − 12 2 g. Khai triển Taylor, hoặc L’Hospital, ĐS: 0 h. L’Hospital, ĐS: 2 1 1 i. L’Hospital, ĐS: j. quy đồng, ad L’Hospital, ĐS: 2 2 2 k. ĐS: e− π l. L’Hospital, ĐS: ∞ 1 1 m. L’Hospital, ĐS: n. L’Hospital, ĐS: 2 3 4 a2 o. Nhân liên hợp, ĐS: p. L’Hospital, thay tương đương, ĐS: 3 b2 x sin x Bài tập 1.56. Chứng minh rằng lim − tồn tại và bằng 1 nhưng không tính được x ∞ x + x → cos bằng quy tắc L’Hospital. Lời giải. x sin x 1 sin x lim − = lim − x = 1 x ∞ x + x x ∞ + cos x → cos → 1 x Nếu áp dụng quy tắc L’Hospital một cách hình thức thì ta có x sin x 1 cos x lim − = lim − x ∞ x + cos x x ∞ 1 sin x → → − Tuy nhiên giới hạn ở vế phải không tồn tại, có thể kiểm tra bằng cách chọn 2 dãy xk = π 2kπ và yk = 2 = 2kπ Bài tập 1.57. Xác định a, b sao cho biểu thức sau đây có giới hạn hữu hạn khi x 0 → 1 1 a b x3 sin3 x(1 + ax + bx2) f (x)= = − sin3 x − x3 − x2 − x x3 sin3 x Lời giải. Tại lân cận của x = 0, ta có thể viết x3 sin x = x + o(x3) − 3! do đó x3 MS = x3[x + o(x3)]3 = x6 + o(x6) − 3! 32
  34. 10. Các lược đồ khảo sát hàm số 33 và 1 TS = x3 sin3 x(1 + ax + bx2)= x3 [x3 + ax4 + (b )x5 + cx6 + o(x6)] − − − 2 ax4 + (b 1 )x5 + cx6 + o(x6) f (x)= − 2 ⇒ − x6 + o(x6) Do đó để tồn tại giới hạn hữu hạn của f (x) khi x 0, ta phải có a = 0, b = 1 → 2 Bài tập 1.58. Cho f là một hàm số thực, khả vi trên [a, b] và có đạo hàm f ”(x) trên (a, b), chứng minh rằng x (a, b) có thể tìm được ít nhất 1 điểm c (a, b) sao cho ∀ ∈ ∈ f (b) f (a) (x a)(x b) f (x) f (a) − (x a)= − − f ”(c) − − b a − 2 − Lời giải. Lấy x (a, b) bất kì. 0 ∈ f (b) f (a) (x a)(x b) Đặt ϕ(x) := f (x) f (a) − (x a) − − .λ − − b a − − 2 − Trong đó λ được xác định bởi điều kiện : f (b) f (a) (x a)(x b) ϕ(x )= f (x ) f (a) − (x a) 0 − 0 − .λ = 0 0 0 − − b a 0 − − 2 − Khi đó ta có ϕ(x0)= ϕ(a) = ϕ(b)= 0 Ta có hàm ϕ liên tục, khả vi trên [a, x0], đo đó ϕ thoả mãn các điều kiện trong định lý Rolle, suy ra tồn tại c (a, x ) sao cho ϕ (c ) = 0. Tương tự như thế, tồn tại c (x , b) 1 ∈ 0 0 1 2 ∈ 0 sao cho ϕ0(c2)= 0. Mặt khác, f (b) f (a) a + b ϕ0(x)= f 0(x) − λ(x ) − b a − − 2 − Theo giả thiết, f có đạo hàm cấp 2, do đó ϕ cũng có đạo hàm cấp 2, và ϕ”(c1)= ϕ”(c2)= 0, nên theo định lý Rolle ta có tồn tại c (c , c ) sao cho ϕ”(c) = f ”(c) λ = 0 λ = f ”(c), ∈ 1 2 − ⇒ và ta có : f (b) f (a) (x a)(x b) f (x) f (a) − (x a)= − − f ”(c) − − b a − 2 − §10. CÁC LƯỢC ĐỒ KHẢO SÁT HÀM SỐ 10.1 Khảo sát và vẽ đồ thị của hàm số y = f (x) Mục này học sinh đã được nghiên cứu tương đối kĩ trong chương trình phổ thông nên chỉ nhấn mạnh cho sinh viên những điểm cần chú ý trong quá trình khảo sát hàm số và khảo sát một số hàm số khác với chương trình phổ thông như hàm số có chứa căn thức, Sơ đồ khảo sát 33
  35. 34 Chương 1. Hàm số một biến số (13LT+13BT) 1. Tìm MXĐ của hàm số, nhận xét tính chẵn, lẻ, tuần hoàn của hàm số (nếu có). 2. Xác định chiều biến thiên: tìm các khoảng tăng, giảm của hàm số. 3. Tìm cực trị (nếu có). 4. Xét tính lồi, lõm (nếu cần thiết), điểm uốn (nếu có). 5. Tìm các tiệm cận của hàm số (nếu có). 6. Lập bảng biến thiên. 7. Tìm một số điểm đặc biệt mà hàm số đi qua (ví dụ như giao điểm với các trục toạ độ, ) và vẽ đồ thị của hàm số. 10.2 Khảo sát và vẽ đường cong cho dưới dạng tham số x = x(t) Giả sử cần khảo sát và vẽ đường cong cho dưới dạng tham số y = y(t)  1. Tìm MXĐ, nhận xét tính chẵn, lẻ, tuần hoàn của các hàm sốx(t), y(t) (nếu có). 2. Xác định chiều biến thiên của các hàm số x(t), y(t) theo biến t bằng cách xét dấu các đạo hàm của nó. 3. Tìm các tiệm cận của đường cong (a) Tiệm cận đứng: Nếu lim y(t) = ∞ và lim x(t) = x0 thì x = x0 là một tiệm t t0(∞) t t0(∞) cận đứng của đường cong.→ → (b) Tiệm cận ngang: Nếu lim x(t)= ∞ và lim y(t)= y0 thì y = y0 là một tiệm t t0(∞) t t0(∞) cận ngang của đường cong.→ → (c) Tiệm cận xiên: Nếu lim y(t)= ∞ và lim x(t)= ∞ thì đường cong có thể có t t (∞) t t (∞) → 0 → 0 tiệm cận xiên. Nếu y(t) a = lim , b = lim [y(t) ax(t)] t t (∞) x(t) t t (∞) − → 0 → 0 thì y = ax + b là một tiệm cận xiên của đồ thị hàm số. 4. Để vẽ đường cong được chính xác hơn, ta xác định tiếp tuyến của đường cong tại các điểm đặc biệt. Hệ số góc của tiếp tuyến của đường cong tại mỗi điểm bằng dy y = t0 dx xt0 34
  36. 10. Các lược đồ khảo sát hàm số 35 Ngoài ra có thể khảo sát tính lồi lõm và điểm uốn (nếu cần thiết) bằng cách tính các đạo hàm cấp hai y d t0 d2y x y ”x y x ”  t0  tt t0 t0 t 2 = = −3 dx dx xt0 5. Xác định một số điểm đặc biệt mà đồ thị hàm số đi qua và vẽ đồ thị hàm số. 10.3 Khảo sát và vẽ đường cong trong hệ toạ độ cực 10.4 Bài tập Bài tập 1.59. Khảo sát tính đơn điệu của hàm số a. y = x3 + x ĐS : hàm số tăng với mọi x b. y = arctg x x ĐS : hàm số giảm với mọi x − Bài tập 1.60. Chứng minh các bất đẳng thức a. 2x arctg x ln(1 + x2) x R ≥ ∀ ∈ 2 b. x x ln(1 + x) x x 0 − 2 ≤ ≤ ∀ ≥ Lời giải. a. Xét hàm số f (x)= 2x arctg x ln(1 + x2) f (x)= 2 arctg x. − ⇒ 0 – Nếu x 0, f (x) 0 f (x) f (0)= 0 ≥ 0 ≥ ⇒ ≥ – Nếu x 0, f (x) 0 f (x) f (0)= 0 ≤ 0 ≤ ⇒ ≤ 2 b. Tương tự, xét g(x)= x x ln(1 + x), h(x) = ln(1 + x) x − 2 − − x2 x g0(x)= < 0, h0(x)= < 0 g(x) g(0)= 0, h(x) h(0)= 0. −1 + x −1 + x ⇒ ≤ ≤ Bài tập 1.61. Tìm cực trị của hàm số 3x2 + 4x + 4 x + 1 a. y = = 3 + x2 + x + 1 x2 + x + 1 b. y = x ln(1 + x) − c. y = 3 (1 x)(x 2)2 − − Lời giải.p a) x(x + 2) 8 y0 = − , y = y( 2)= , y = y(0)= 4 (x2 + x + 1)2 min − 3 max 35
  37. 36 Chương 1. Hàm số một biến số (13LT+13BT) b) x y0 = , y = y(0)= 0 ⇒ 1 + x min c) 3 2 3 4 1 (x 2) 2 √1 x 3 x y0 = − + − = − −3 3 (1 x)2 3 √3 x 2 3 (1 x)2(x 2) p − − − − p √3 p – Xét x = 4 , ta có y = y( 4 )= 4 1 3 min 3 − 3 – Xét x2 = 1, y0 không đổi dấu, hàm số không đạt cực trị tại x2 = 1 – Xét x3 = 2, ta có ymax = y(2)= 0 Bài tập 1.62. Chứng minh các bất đẳng thức sau a. ex > 1 + x x = 0 ∀ 6 3 b. x x 0 − 6 ∀ 3 c. tg x > x + x 0 0 ta có 1 x 1 x+1 1 + < e < 1 + x x     Bài tập 1.64. Tính các giới hạn sau 1 1 1 sin x x cos x [a.] lim [x x2 ln(x + )] [b.] lim cotg x = − x ∞ − x x 0 x x − x2 sin x → →  x 3 1 e 5 2 2 [c.] lim x− [sin(sin x) x. 1 x ] [d.] lim[ln(1 + x) x ] x 0 − − x 0 − x → p → 36