Giáo trình Vận hành hệ thống điện
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình Vận hành hệ thống điện", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- giao_trinh_van_hanh_he_thong_dien.pdf
Nội dung text: Giáo trình Vận hành hệ thống điện
- Giáo trình Vận hành hệ thống điện
- Män hoüc: Váûn haình Hãû thäúng âiãûn Chæång 1 CAÏC PHÆÅNG PHAÏP DÆÛ BAÏO PHUÛ TAÍI ÂIÃÛN NÀNG 1.1. KHAÏI NIÃÛM CHUNG Dæû baïo phuû taíi âiãûn nàng laì mäüt váún âãö quan troüng trong cäng taïc thiãút kãú qui hoaûch hãû thäúng âiãûn. Muûc âêch cuía dæû baïo âiãûn nàng trong tæång lai dæûa vaìo caïc quan saït trong quaï khæï, phuûc vuû cho cäng taïc qui hoach nguäön læåïi trong hãû thäúng âiãûn, phuûc vuû cho cäng taïc âiãöu âäü hãû thäúng (coï kãú hoaûch chuáøn bë sàôn saìng âaïp æïng phuû taíi) Dæû baïo laì mäüt khoa hoüc coìn non treí, trong âoï nhiãöu váún âãö chæa hçnh thaình troün veûn. Âäúi tæåüng nghiãn cæïu cuía khoa hoüc naìy laì caïc phæång phaïp dæû baïo vaì phaûm vi æïng duûng laì caïc hiãûn tæåüng xaî häüi, kinh tã,ú kyî thuáût, v . v . . . Dæû baïo laì mäüt khoa hoüc quan troüng, nhàòm muûc âêch nghiãn cæïu nhæîng phæång phaïp luáûn khoa hoüc, laìm cå såí cho viãûc âãö xuáút caïc dæû baïo cuû thãø cuîng nhæ viãûc âaïnh giaï mæïc âäü tin cáûy, mæïc âäü chênh xaïc cuía caïc phæång phaïp dæû baïo - nãúu dæû baïo sai lãûch quaï nhiãöu vãö khaí nàng cung cáúp vaì nhu cáöu nàng læåüng seî dáùn âãún háûu quaí khäng täút cho nãön kinh tãú. Nãúu dæû baïo quaï thæìa vãö nguäön seî phaíi huy âäüng nguäön quaï låïn laìm tàng väún âáöu tæ dáùn âãún laîng phê väún âáöu tæ vaì khäng khai thaïc hãút cäng suáút thiãút bë, ngæåüc laûi nãúu dæû baïo thiãúu cäng suáút nguänö seî dáùn âãún cung cáúp âiãûn khäng âuí cho nhu cáöu cuía phuû taíi, giaím âäü tin cáûy cung cáúp âiãûn gáy thiãût haûi cho nãön kinh tãú quäúc dán. * Phán loaûi dæû baïo : Theo thåìi gian dæû baïo (táöm dæû baïo) ta phán ra caïc loaûi dæû baïo sau : - Dæû baïo ngàõn haûn (táöm ngàõn): Thåìi gian tæì 1 âãún 2 nàm - Dæû baïo haûng væìa (táöm trung): Thåìi gian tæì 3 âãún 10 nàm - Dæû baïo daìi haûn (táöm xa): Thåìi gian tæì 15 âãún 20 nàm, coï tênh cháút chiãún læåüc Ngoaìi ra coìn coï dæû baïo âiãöu âäü våïi thåìi gian dæû baïo theo giåì trong ngaìy, tuáön, . . . âãø phuûc vuû cho cäntg taïc âiãöu âäü hãû thäúng. Sai säú cho pheïp âäúi våïi tæìng loaûi dæû baïo nhæ sau: - Dæû baïo táöm ngàõn vaì táöm trung: Tæì (5 - 10)%, - Âäúi våïi dæû baïo daìi haûn 5 - 15% (tháûm chê âãún 20%), - Coìn dæû baïo âiãöu âäü thç cho pheïp (3 - 5)%. 1.2. CAÏC PHÆÅNG PHAÏP DÆÛ BAÏO 1.2.1. Phæång phaïp tênh hãû säú væåüt træåïc Phæång phaïp naìy cho biãút khuynh hæåïng phaït triãøn cuía nhu cáöu tiãu thuû âiãûn nàng so våïi nhëp âäü phaït triãøn cuía nãön kinh tãú quäúc dán. Vê duû : Trong khoaíng thåìi gian 5 nàm tæì nàm 1995 âãún nàm 2000, saín læåüng cäng nghiãûp cuía Thaình phäú Âaì Nàông tàng tæì 100 lãn 150%, coìn saín læåüng âiãûn nàng tiãu thuû cuîng trong khoaíng thåìi gian âoï tàng 170%. Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 1
- Män hoüc: Váûn haình Hãû thäúng âiãûn Nhæ váûy hãû säú væåüt træåïc laì: 170 k = ≈ 1,13 150 Dæûa vaìo hãû säú k ta xaïc âënh âæåüc âiãûn nàng tiãu thuû åí nàm dæû baïo. Phæång phaïp naìy coï nhiãöu sai säú do nhæïng nguyãn nhán sau : - Suáút tiãu hao âiãûn nàng ngaìy caìng giaím (âäúi våïi mäüt saínm pháøm) do cäng nghãû ngaìy caìng cao vaì quaín lyï ngaìy caìng täút hån. - Âiãûn nàng ngaìy caìng sæí duûng trong nhiãöu ngaình kinh tãú vaì nhiãöu âëa phæång. - Cå cáúu kinh tãú thæåìng xuyãn thay âäøi 1.2.2. Phæång phaïp tênh træûc tiãúp : Näüi dung cuía phæång phaïp laì xaïc âënh âiãûn nàng tiãu thuû cuía nàm dæû baïo dæûa trãn täøng saín læåüng kinh tãú cuía caïc ngaình åí nàm dæû baïo vaì suáút tiãu hao âiãûn nàng âäúi våïi tæìng loaûi saín pháøm, mæïc tiãu hao cuía tæìng häü gia âçnh . . .Phæång phaïp naìy âæåüc aïp duûng åí caïc næåïc coï nãön kinh tãú phaït triãøn äøn âënh, coï kãú hoaûch, khäng coï khuíng hoaíng. Æu âiãøm cuía phæång phaïp laì: tênh toaïn âån giaín, cho ta biãút âæåüc tè lãû sæí duûng âiãûn nàng trong caïc ngaình kinh tãú nhæ cäng nghiãûp, näng nghiãûp, dán duûng, v . v. . . vaì xaïc âënh âæåüc nhu cáöu âiãûn nàng åí tæìng âëa phæång (sæí duûng thuáûn tiãûn trong qui hoaûch). Nhæåüc âiãøm : Mæïc âäü chênh xaïc phuû thuäüc nhiãöu vaìo viãûc thu tháûp säú liãûu cuía caïc ngaình, âëa phæång dæû baïo. Phæång phaïp naìy duìng âãø dæû baïo táöm ngàõn vaì táöm trung. 1.2.3. Phæång phaïp ngoaûi suy theo thåìi gian : Näüi dung cuía phæång phaïp laì tçm quy luáût phaït triãøn cuía âiãnû nàng theo thåìi gian dæûa vaìo säú liãûu thäúng kãú trong mäüt thåìi gian quaï khæï tæång âäúi äøn âënh, räöi keïo daìi quy luáût âoï ra âãø dæû baïo cho tæång lai. Vê duû : Mä hçnh coï daûng haìm muî nhæ sau: t At = A0 (1 + α) (1-1) Trong âoï: - α : täúc âäü phaït triãøn bçnh quán haìng nàm - t : thåìi gian dæû baïo - A0 : âiãûn nàng åí nàm choün laìm gäúc - At: âiãûn nàng dæû baïo åí nàm thæï t. t +1 A t +1 A 0 (1 + α ) = t = 1 + α = const = C A t A 0 (1 + α ) Nhæ váûy haìm muî coï æu âiãím laì âån giaín, phaín aïnh chè säú phaït triãøn haìng nàm khäng âäøi. Coï thãø xaïc âënh hàòng säú C bàòng caïch láúy giaï trë trung bçnh nhán chè säú phaït triãøn cuía nhiãöu nàm. C = C1C2 C n (1-2) Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 2
- Män hoüc: Váûn haình Hãû thäúng âiãûn (Ci : hãû säú phaït triãøn nàm i ; n : säú nàm quan saït) Täøng quaït mä hçnh dæû baïo coï daûng : t At = A0C (1-3) Láúy lägarit 2 vãú (1-3) ta âæåüc: lgAt = lgA0 + t. lgC Âàût y = lgAt; a = lgA0 ; b = lgC thç (1-3) coï thãø viãút: y = a + bt (1-4) Caïc hãû säú a,b âæåüc xaïc âënh bàòng phæång phaïp bçnh phæång cæûc tiãøu. Æu âiãøm cuía phæång phaïp ngoaûi suy haìm muî laì âån giaîn vaì coï thãø aïp duûng âãø dæû baïo âiãûn nàng táöm ngàõn vaì táöm xa. Khuyãút âiãøm : kãút quaí chè chênh xaïc nãúu tæång lai khäng nhiãùu vaì quaï khæï phaíi tuán theo mäüt quy luáût (thæåìng âäúi våïi hãû thäúng khäng äøn âënh, thiãúu nguäön thäng tin quaï khæï coï säú liãûu khäng tháût seî dáùn âãún qui luáût sai). 1.2.4. Phæång phaïp tæång quan : Nghiãn cæïu mäúi tæång quan giæîa caïc thaình pháön kinh tãú våïi âiãûn nàng nhàòm phaït hiãûn nhæîng quan hãû vãö màût âënh læåüng tæì âoï xáy dæûng mä hçnh biãøu diãùn sæû tæång quan giæîa âiãûn nàng våïi saín læåüng caïc thaình pháön kinh tãú nhæ: saín læåüng cäng nghiãûp, saín læåüng kinh tãú quäúc dán v v Khi xaïc âënh âæåüc giaï trë saín læåüng caïc thaình pháön kinh tãú ( bàòng caïc phæång phaïp khaïc) åí nàm dæû baïo, dæûa vaìo mäúi quan hãû trãn âãø dæû baïo phuû taíi âiãûn nàng. Nhæåüc âiãøm cuía phæång phaïp laì ta phaíi thaình láûp caïc mä hçnh dæû baïo phuû, vê duû saín læåüng cäng nghiãûp, saín læåüng kinh tãú quäïc dán theo thåìi gian âãø dæû baïo saín læåüng cäng nghiãûp, kinh tãú quäúc dán åí nàm t dæû baïo. 1.2.5. Phæång phaïp so saïnh âäúi chiãúu : So saïnh âäúi chiãúu nhu cáöu phaït triãøn âiãûn nàng cuía caïc næåïc co ï hoaìn caính tæång tæû. Âáy laì phæång phaïp âæåüc nhiãöu næåïc aïp duûng âãø dæû baïo nhu cáöu nàng læåüng mäüt caïch coï hiãûu quaí. Phæång phaïp thæåìng âæåüc aïp duûng cho dæû baïo ngàõn haûn vaì trung haûn. 1.2.6. Phæång phaïp chuyãn gia : Dæûa trãn cå såí hiãøu biãút sáu sàõc cuía caïc chuyãn gia gioíi åí caïc lénh væûc cuía caïc ngaình âãø dæû baïo caïc chè tiãu kinh tãú. Cuîng coï khi duìng phæång phaïp naìy âãø dæû baïo triãøn voüng, thæåìng ngæåìi ta láúy trung bçnh coï tè troüng yï kiãún cuía caïc chuyãn gia phaït biãøu. 1.3. ÂAÏNH GIAÏ TÆÅNG QUAN GIÆÎA CAÏC ÂAÛI LÆÅÜNG TRONG MÄ HÇNH DÆÛ BAÏO Mä hçnh dæû baïo biãøu diãùn mäúi tæång quan giæîa âiãûn nàng y (laì âäúi tæåüng ngáùu nhiãn) våïi mäüt biãún ngáùu nhiãn x khaïc (nhæ giaï trë saín læåüng cäng nghiãûp, saín læåüng kinh tãú quäúc dán . . .) laì mäüt mä hçnh maì sæû thay âäøi cuía y phuû thuäüc vaìo sæû thay âäøi cuía âaûi læåüng x. Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 3
- Män hoüc: Váûn haình Hãû thäúng âiãûn Ngoaìi viãûc xaïc âënh mäüt caïch gáön âuïng ( theo phæång phaïp bçnh phæång cæûc tiãøu) caïc hãû säú cuía phæång trçnh häöi qui, cáön xaïc âënh mäüt âaûi læåüng âàûc træng phuû næîa laì hãû säú tæång quan r, noïi lãn sæû phuû thuäüc tuyãún tênh giæîa caïc biãún ngáùu nhiãn y vaì x. Hãû säú tæång quan tuyãún tênh âæåüc xaïc âënh nhæ sau: n ' ' ∑ xi yi r = i=1 (1-5) n n ' 2 ' 2 ∑∑()xi . (yi ) i==11i trong âoï : x ' = x − x ⎫ i i ⎪ ' yi = yi − y ⎪ n n _ ⎪ ' ' ⎪ ∑ xi yi = ∑ xi yi − n x y i=1 i=1 ⎪ n n ⎪ 2 ⎪ ' 2 2 ⎬ (1-6) ∑()xi = ∑ xi − nx i=1 i=1 ⎪ n n ⎪ ' 2 2 2 ⎪ ∑()yi = ∑ yi − ny i=1 i=1 ⎪ n n ⎪ 1 1 ⎪ x = ∑ xi ; y = ∑ yi n i=1 n i=1 ⎭⎪ ⎛ x ' y ' = x y − x y − y x + xy ⎞ ⎜∑ i i ∑ i i ∑ i ∑ i ∑ ⎟ ⎜= x y − xny − ynx + nxy ⎟ ⎜ ∑ i i ⎟ ⎜ ⎟ ⎝= ∑ xi yi − nx y ⎠ Våïi x, y : giaï trë trung bçnh n : säú quan saït -1 ≤ r ≤ +1 Âaûi læåüng r caìng låïn thç mäúi liãn hãû tuyãún tênh giæîa caïc biãún ngáùu nhiãn caìng chàût, hãû säú tæång quan coï thãø xem nhæ mäüt chè tiãu cuía haìm læûa choün. Âãø xem hãû säú tæång quan r täön taûi åí mæïc âäü nhæ thãú naìo, sau khi tênh âæåüc giaï trë r ta tiãúp tuûc phán têch thäúng kã theo biãøu thæïc : r n − 2 t = (1-7) 1− r 2 Âaûi læåüng t laì mäüt âaûi læåüng ngáùu nhiãn coï phán phäúi Student, so saïnh giaï trë t tçm âæåüc våïi baíng phán bäú Student. Giaí thiãút våïi âäü tin cáûy laì 0,95 nãúu t > t 0,05 thç chæïng toí caïc biãún ngáùu nhiãn y vaì x tæång quan tuyãún tênh våïi nhau. Vê duû: Âaïnh giaï tæång quan giæîa âiãûn nàng tiãu thuû våïi giaï trë saín læåüng cäng nghiãûp ghi trong baíng sau: Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 4
- Män hoüc: Váûn haình Hãû thäúng âiãûn Säú thæï tæû Âiãûn nàng tiãu thuû Giaï trë saín læåüng cäng nghiãûp ( KW ) ( 103 âäöng) 01 2,8 6,7 02 2,8 6,9 03 3,0 7,2 04 2,9 7,3 05 3,4 8,4 06 3,9 8,8 07 4,0 9,1 08 4,8 9,8 09 4,9 10,6 10 5,2 10,7 11 5,4 11,1 12 5,5 11,8 13 6,2 12,1 14 7,0 12,4 Goüi y laì âiãûn nàng tiãu thuû vaì x laì giaï trë saín læåüng cäng nghiãûp. Giaí thiãút y vaì x coï mäúi quan hãû tuyãún tênh báûc nháút theo daûng: y = Ax + B Trong âoï A vaì B laì caïc hãû säú xaïc âënh theo phæång phaïp bçnh phæång cæûc tiãøu. Phæång trçnh häöi qui coï daûng: y = 3,1003 + 1,4481x Xaïc âënh hãû säú tuæång quan r: n y ∑ i 132 ,9 y = i = 1 = = 9 ,4928 n 14 n x ∑ i 61 ,8 x = i = 1 = = 4 ,4143 n 14 n n ' ' ∑ xi yi = ∑ xi yi − nxy = 622,81 − 14x4,4143 x9,4928 = 34,7516 i =1 i =1 n n ' 2 2 2 2 ∑ (xi ) = ∑ xi − nx = 296,8 − 14x4,4143 = 23,9973 i =1 i =1 n n ' 2 2 2 2 ∑ ( yi ) = ∑ yi − ny = 1313,95 − 14x9,4928 = 52,35 i =1 i =1 Tæì caïc giaï trë trãn ta tênh âæåüc hãû säú tæång quan laì: Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 5
- Män hoüc: Váûn haình Hãû thäúng âiãûn 34,7516 r = = 0,98 23,9973x52,35 Ta nháûn tháúy giaï trë r gáön bàòng 1 cho tháúy mæïc âäü tæång quan giæîa y vaì x laì tæång quan ráút chàût. Theo (1-7) ta tênh âæåüc: 0,98 14 − 2 t = = 17 ,05 1 − 0,98 2 Giaí thiãút våïi âäü tin cáûy laì 0,95 tra baíng phán phäúi Student ta âæåüc: t0,05=2,179. Nhæ váûy: t = 17,05 > t0,05 = 2,179, chæïng toí ràòng y vaì x tæång quan tuyãún tênh våïi nhau. 1.4. PHÆÅNG PHAÏP BÇNH PHÆÅNG CÆÛC TIÃØU 1.4.1 Khaïi niãûm: Xeït træåìng håüp âån giaín nháút gäöm hai biãún ngáùu nhiãn coï liãn hãû nhau bàòng mäüt haìm daûng tuyãún tênh: y = α + βx (1-8) Trong âoï α, β laì nhæîng hãû säú khäng thay âäøi, x laì biãún âäüc láûp, y laì biãún phuû thuäüc. Nãúu xeït âãún aính hæåíng cuía caïc hiãûn tæåüng ngáùu nhiãn thç (1-8) coï thãø viãút mäüt caïch täøng quaït nhæ sau: y = α + βx + ε (1-9) Våïi nhiãùu ε coï caïc giaí thiãút sau: - ε : biãùn ngáùu nhiãn - Kyì voüng toaïn E(ε) = 0 - Phæång sai cuía ε = const - Caïc giaï trë ε khäng phuû thuäüc nhau. Dæûa vaìo kãút quaí thäúng kã chuïng ta thu âæåüc mäüt daîy caïc giaï trë xi, tæång æïng seî coï mäüt daîy caïc giaï trë yi. Váún âãö laì xaïc âënh caïc thäng säú α, β. Nhæng giaï trë thæûc cuía chuïng khäng thãø biãút âæåüc vç chuïng ta chè dæûa vaìo mäüt læåüng thäng tin haûn chãú, maì chè nháûn âæåüc caïc giaï trë tênh toaïn a, b. Do âoï phæång trçnh häöi qui coï daûng: y) = a + bx (1 - 10) Cáön phaíi tçm caïc hãû säú a, b nhæ thãú naìo âãø âæåìng häöi quy gáön âuïng våïi âæåìng thæûc tãú nháút, nghéa laì sao cho täøng bçnh phæång caïc âäü lãûch giæîa giaï trë tênh toaïn theo phæång trçnh häöi qui våïi giaï trë thæûc tãú tæång æïng laì nhoí nháút nghéa laì âaût âæåüc muûc tiãu: 2 n ⎛ ^ ⎞ ∑ ⎜ yi − yi ⎟ → min (1-11) i=1 ⎝ ⎠ Âáy chênh laì tinh tháön cuía phæång phaïp bçnh phæång cæûc tiãøu. Phæång phaïp naìy âæåüc æïng duûng phäø biãún vç tênh cháút âån giaín vaì coï cå såí væîng chàõc vãö màût xaïc suáút, theo phæång phaïp trãn caïc hãû säú a, b nháûn âæåüc coï tênh cháút sau âáy : a. Caïc âaïnh giaï cuía caïc thäng säú khäng lãûch, nghéa laì : Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 6
- Män hoüc: Váûn haình Hãû thäúng âiãûn E(a) = α E(b) = β (nghéa laì sai säú khäng nghiãng vãö mäüt phêa - caïc thäng säú læûa choün táûp trung xung quanh giaï trë thæûc maì ta chæa biãút) b. Caïc giaï trë quan saït âæåüc laì xaïc âaïng, nghéa laì phæång sai caïc giaï trë áúy tiãún tåïi 0 khi tàng säú quan saït n lãn : σ 2 = 0 ; σ 2 = 0 lim a lim b n→∝ n→∝ c. Caïc giaï trë quan saït âæåüc laì hiãûu quaí nghéa laì coï phæång sai nhoí nháút. 1.4.2. Caïc biãøu thæïc toaïn hoüc âãø xaïc âënh caïc mä hçnh dæû baïo: Giaí thiãút ràòng coï haìm säú liãn tuûc y = ϕ (x, a, b, c ). Xaïc âënh caïc hãû säú a, b, c n 2 ∑ []y i − ϕ ( x i , a , b , c ) ⇒ min (1 - 12) i = 1 sao cho thoía maín âiãöu kiãûn: Muäún váûy chuïng ta láön læåüt láúy âaûo haìm (1-12) theo a, b, c vaì cho triãût tiãu, chuïng ta seî âæåüc mäüt hãû phæång trçnh: Giaíi hãû phæång trçnh (1-13) chuïng ta seî xaïc âënh dæåüc caïc hãû säú a, b, c Sau âáy xeït mäüt säú phæång trçnh thæåìng gàûp. n ∂ ϕ ⎫ []y − ϕ ( x , a , b , c ) 2 = 0 ∑ i i ∂ a ⎪ i = 1 ⎪ n 2 ∂ ϕ ⎪ ∑ []y i − ϕ ( x i , a , b , c ) = 0 ⎬ (1 - 13) i = 1 ∂ b ⎪ n 2 ∂ ϕ ⎪ ∑ []y i − ϕ ( x i , a , b , c ) = 0 ⎪ i = 1 ∂ c ⎭ 1. Daûng phæång trçnh: Phæång trçnh häöi qui : ŷ = a + bx (1-14) Ta coï mäüt daîy quan saït xi (i = i, n ) tæång æïng laì daîy yi (i = i, n ) Cáön tçm caïc hãû säú a, b sao cho 2 n ⎛ ^ ⎞ ∑ ⎜ yi − yi ⎟ → min i=1 ⎝ ⎠ n 2 F(a,b) = ∑[yi − ()a + bxi ] → min i=1 Theo (1-13) ta coï: Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 7
- Män hoüc: Váûn haình Hãû thäúng âiãûn ⎧∂F n ⎫ ⎪ = 0 ⇔ ∑ []yi − ()a + bxi = 0 ⎪ ⎪ ∂a i=1 ⎪ (1-15) ⎨ n ⎬ ⎪∂F ⎪ = 0 ⇔ ∑ []yi − ()a + bxi xi = 0 ⎩⎪ ∂b i=1 ⎭⎪ Hoàûc coï thãø viãút: n n ⎫ b∑ xi + na = ∑ yi ⎪ i=1 i=1 ⎪ (1-16) n n n ⎬ 2 ⎪ b∑ xi + a∑ xi = ∑ xi yi i=1 i=1 i=1 ⎭⎪ Giaíi ra ta tçm âæåüc a, b Nhæ váûy dæûa vaìo n quan saït ta tçm âæåüc haìm häöi qui, nghéa laì ta tçm âæåüc a, b xaïc âaïng, khäng chãnh lãûch vaì hiãûu quaí. Chia phæång trçnh thæï nháút cuía (1-16) cho säú quan saït n ta coï : a + b x = y (1-17) Nhæ váûy phæång trçnh häöi qui cho âæåìng thàóng âi qua âiãøm coï toaû âäü ( x, y ). Âàût x ' = x − x i i (gäúc toaû âäü chuyãøn âãún âiãøm ( x, y ) ) ' yi = yi − y n n ' ' Khi âoï ∑ xi = 0 ; ∑ yi = 0 i=1 i=1 Ta seî xaïc âënh âæåüc: n ' ' ⎫ ∑ xi yi ⎪ i=1 ⎪ b = n ⎪ '2 ⎬ (1-18) x i ∑ ()⎪ i=1 ⎪ a = y − bx ⎭⎪ ' ' ' 2 Trong âoï : ∑ xi yi vaì ∑ (xi ) xaïc âënh theo (1-6) . Vê duû : Xáy dæûng mä hçnh dæû baïo daûng y = a + bx, biãút daîy säú liãûu quan saït sau âáy Nàm Säú thæï tæû (nàm) Âiãûn nàng tiãu thuû [MWh] 1990 1 12,20 1991 2 13,15 1992 3 14,60 1993 4 16,10 1994 5 17,20 1995 6 18,50 Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 8
- Män hoüc: Váûn haình Hãû thäúng âiãûn 1996 7 19,40 1997 8 20,60 1998 9 21,75 1999 10 23,50 Theo (1-16) chuïng ta phaíi láön læåüt xaïc âënh caïc âaûi læåüng sau: n n n n 2 ∑ x i ; ∑ y i ; ∑ x i ; ∑ x i y i i =1 i =1 i =1 i =1 Caïc kãút quaí tênh toaïn ghi trong baíng sau: 2 Säú thæï tæû nàm ti Âiãûn nàng tiãu thuû yi t i tiyi 1 12,2 1 12,2 2 13,15 4 26,30 3 14.60 9 43,80 4 16,10 16 64,40 5 17,2 25 86,0 6 18,50 36 111,0 7 19,40 49 135,8 8 20,60 64 164,8 9 21,75 81 195,75 10 23,50 100 235,00 55 177 385 1075 Tæì âoï ta coï hãû phæång trçnh sau: n n ⎫ b∑ti + na = ∑ yi ⎪ i=1 i=1 ⎪ ⎧55b +10a = 177 ⇒ n n n ⎬ ⎨ 2 ⎪ ⎩385b + 55a = 1075 b∑ti + a∑ti = ∑ti yi i=1 i=1 i=1 ⎭⎪ Giaíi hãû phæång trçnh trãn ta tçm âæåüc: a = 10,93; b = 1,231 Phæång trçnh häöi qui coï daûng : ŷ = 10,93 + 1,231t Hoàûc coï thãø xaïc âënh caïc hãû säú a, b theo (1-18) nhæ sau: 1 y = y = 17,70 n ∑ i 1 t = t = 5,50 n ∑ i ' ti = ti − x ' yi = yi − y ' ' ' 2 Cáön xaïc âënh ∑ti yi ; ∑(ti ) ; Caïc kãút quaí tênh toaïn ghi trong baíng sau: Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 9
- Män hoüc: Váûn haình Hãû thäúng âiãûn 2 ti yi t’i y’i t’i y’i t’i 1 12,2 -4,5 -5,50 24,75 20,25 2 13,15 -3,5 -4,55 15,93 12,25 3 14,60 -2,5 -3,10 7,75 6,25 4 16,10 -1,5 -1,60 2,40 2,25 5 17,2 -0,5 -0,50 0,25 0,25 6 18,50 0,5 0,80 0,40 0,25 7 19,40 1,5 1,70 2,55 2,25 8 20,60 2,5 2,90 7,25 6,25 9 21,75 3,5 4,05 14,17 12,25 10 23,50 4,5 5,80 26,10 20,25 101,55 82,5 Ta tçm âæåüc : 10 ' ' ∑ ti yi i=1 101,55 b = 10 = = 1,231 ' 2 82,5 ∑ ()ti i=1 a = y − bt = 17,70 - 1,231 . 5,50 = 10,93 Phæång trçnh häöi qui : ŷ = 10,93 + 1,231t Hãû säú tæång quan : ' ' xi yi 101,55 r = ∑ = = 0,9985 2 ' 2 82,5.125,35 ∑∑()xi . (yi ) Hãû ssäú tæång quan r gáön bàòng 1 cho tháúy y vaì t tæång quan chàût. r n − 2 r 10 − 2 8r t = = = = 145,894 1− r 2 1− r 2 1− r 2 Våïi âäü tin cáûy 0,95 tra baíng phán phäúi Student ta âæåüc t0,05 = 1,86, ta nháûn tháúy ràòng t > t0,05 , nhæ váûy giæîa y vaì t tæång quan tuyãún tênh våïi nhau. 2. Daûng phæång trçnh : ŷ = ax2 + bx + c (1-19) Cuîng dæûa vaìo daîy quan saït trong quaï khæï âãø xaïc âënh caïc hãû säú a, b, c sao cho âaût âæåüc haìm muûc tiãu: n ˆ 2 ∑()yi − yi → min i=1 2 2 ⇔ F = ∑[yi − (axi + bxi + c)] → min Theo (1-13) ta coï: Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 10
- Män hoüc: Váûn haình Hãû thäúng âiãûn ∂F n ⎫ = 0 ⇒ []y − ()ax 2 + bx + c .x 2 = 0 ∂a ∑ i i i i ⎪ i=1 ⎪ n ∂F 2 ⎪ = 0 ⇒ ∑ [yi − (axi + bxi + c)].xi = 0 ⎬ (1-20) ∂b i=1 ⎪ n ⎪ ∂F 2 = 0 ⇒ ∑ []yi − ()axi + bxi + c = 0 ⎪ ∂c i=1 ⎭ Hoàûc laì : n n n n 4 3 2 2 ⎫ a∑ xi + b∑ xi + c∑ xi = ∑ xi yi ⎪ i=1 i=1 i=1 i=1 ⎪ n n n n 3 2 ⎪ a∑ xi + b∑ xi + c∑ xi = ∑ xi yi ⎬ (1-21) i=1 i=1 i=1 i=1 ⎪ n n n ⎪ 2 a∑ xi + b∑ x + c = ∑ yi ⎪ i=1 i=1 i=1 ⎭ Giaíi hãû (1-21) ta âæåüc a, b, c Vê duû : Xáy dæûng mä hçnh daûng y = ax2 + bx + c biãút daîy säú liãûu quan saït sau âáy: Nàm Säú thæï tæû nàm t Âiãûn nàng quan saït [MWh] 1990 0 57,10 1991 1 46,47 1992 2 43,57 1993 3 41,47 1994 4 46,93 1995 5 60,18 Tênh toaïn caïc hãû säú cuía hãû phæång trçnh (1-21) ghi kãút quaí vaìo baíng sau: 2 3 4 2 STT Âiãûn nàng tiãu xi xi xi xiyi xi yi nàm xi thuû [MWh] yi 0 57,1 0 0 0 0 0 1 46,47 1 1 1 46,47 46,47 2 43,57 4 8 16 87,14 174,28 3 41,47 9 27 81 124,41 373,23 4 46,93 16 64 256 187,72 750,88 5 60,18 25 125 625 300,90 1504,50 15 295,72 55 225 979 746,64 2849,36 Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 11
- Män hoüc: Váûn haình Hãû thäúng âiãûn ⎧979a + 225b + 55c = 2849,36 ⎪ ⎨225a + 55b +15c = 764,64 ⎪ ⎩55a +15b + 6c = 295,72 Giaíi hãû phæång trçnh trãn ta âæåüc kãút quaí: a = 2,727 b = - 13,22 c = 57,35 Váûy phæång trçnh häöi qui tçm âæåüc nhæ sau: ŷ = 2,727 x2 - 13,22 x + 57,35 3. Daûng phæång trçnh muî: ŷ = abx (1-22) våïi a > 0; b > 0. Láúy logarit hai vãú ta âæåüc: lg y = lga + x lgb Hay Y = A + Bx (1-23) Trong âoï: Y = lg y; A = lg a; B = lg b (1-24) Tæång tæû nhæ daûng phæång trçnh báûc nháút ta coï hãû phæång trçnh sau: ⎧ n n ⎪B∑ xi + nA = ∑Yi ⎪ i=1 i=1 (1-25) ⎨ n n n ⎪ 2 B∑ xi + A∑ xi = ∑ xiYi ⎩⎪ i=1 i=1 i=1 Giaíi hãû phæång trçnh (1-25) ta âæåüc A vaì B, theo (1-24) seî tçm âæåüc a, b. Hay cuîng coï thãø xaïc âënh A vaì B nhæ sau: n ⎧ ' ' ⎪ ∑ xiYi i=1 ⎪B = n (1-26) ⎨ x '2 ⎪ ∑ i ⎪ i=1 ⎩⎪A = Y − Bx Vê duû: Âiãûn nàng tiãu thuû åí mäüt âëa phæång âæåüc ghi trong baíng sau: Nàm 1995 1996 1997 1998 1999 2000 2001 ( t ) ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) Âiãûn nàng 7,34 11,43 14,25 16,25 19,40 24,98 34,97 106[KWh] A(t) t Mä hçnh dæû baïo coï daûng A(t) = A0C , trong âoï A(t) laì âiãûn nàng åí nàm thæï t, A0 laì âiãûn nàng cuía nàm choün laìm gäúc, C laì hãû säú. Ta thaình láûp hãû phæång trçnh theo (1-25): Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 12
- Män hoüc: Váûn haình Hãû thäúng âiãûn ⎧ n n ⎪logC∑ti + nlog A0 = ∑log Ai ⎪ i=1 i=1 ⎨ n n n ⎪ 2 logC∑ti + log A0 ∑ti = ∑ti log Ai ⎩⎪ i=1 i=1 i=1 Tênh toaïn caïc hãû säú ghi trong baíng sau: 6 2 ti Ai[10 KWh] ti logAi ti.logAi 1 7,34 1 6,865 6,865 2 11,43 4 7,058 14,116 3 14,25 9 7,153 21,459 4 16,25 16 7,225 28,900 5 19,04 25 7,228 36,140 6 24,98 36 7,398 44,388 7 34,97 49 7,544 51,808 28 140 50,531 204,976 Ta coï hãû phæång trçnh sau: ⎧140logC + 28log A0 = 204,976 ⎨ ⎩28logC + 7log A0 = 50,531 Suy ra: 6 logA0 = 6,8113 ⇒ A0 = 6,476.10 KWh logC = 0,102 ⇒ C = 1,265 Ta coï phæång trçnh häöi qui nhæ sau: A(t) = 6,476.106.(1,265)t Ghi chuï: Âãø dæû baïo phuû taíi âiãûn nàng thæåìng sæí duûng caïc phæång phaïp sau: - Phæång phaïp san bàòng haìm muî, - Xaïc âënh toaïn tæí dæû baïo täúi æu trong nàng læåüng, - Xæí duûng mä hçnh lyï thuyãút thäng tin âaïnh giaï tæång quan trong dæû baïo nhu cáöu âiãûn nàng. Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 13
- Män hoüc: Váûn haình Hãû thäúng âiãûn Chæång 2 TÊNH TOAÏN PHÁN BÄÚ TÄÚI ÆU CÄNG SUÁÚT TRONG HÃÛ THÄÚNG ÂIÃÛN BÀÒNG PHÆÅNG PHAÏP LAGRANGE 2.1. MÅÍ ÂÁÖU Cáön phaíi xaïc âënh sæû phán bäú täúi æu cäng suáút giæîa caïc nhaì maïy âiãûn trong hãû thäúng âiãûn ( coï thãø chè coï caïc nhaì maïy nhiãût âiãûn , hoàûc coï caí nhæîng nhaì maïy thuíy âiãûn ) âuí âaïp æïng mäüt giaï trë phuû taè täøng cho træåïc (kãø caí caïc täøn tháút) nhàòm náng cao tênh váûn haình kinh tãú cuía hãû thäúng âiãûn . Âáy laì baìi toïan âa chè tiãu: - Chi phê nhiãn liãûu täøng trong toìan hãû thäúng laì nhoí nháút (min) - Âaím baío âäü tin cáûy håüp lyï - Cháút læåüng âiãûn nàng âaím baío Giaíi quyãút baìi toïan âa chè tiãu nhæ váûy hiãûn nay chæa coï mäüt mä hçnh toïan hoüc chàût cheí, ma ì thæåìng chè giaíi quyãút caïc baìi toïan riãng biãût, sau âoï kãút håüp laûi. Vç váûy baìi toïan phán bäú täúi æu cäng suáút giæîa caïc nhaì maïy âiãûn thæåìng chè xeït âaût muûc tiãu quan troüng laì chi phê nhiãn liãûu täøng trong toìan hãû thäúng laì nhoí nháút. 2.2. BAÌI TOÏAN LAGRANGE: Baìi toïan âæåüc phaït biãøu nhæ sau: Cáön phaíi xaïc âënh caïc áøn säú x1, x2, , xi, ,xn sao cho âaût cæûc trë haìm muûc tiãu : F(x1, x2, , xj, ,xn)→ min (max) (2-1) vaì thoía maín m âiãöu kiãûn raìng buäüc: (m<n) g1(x1, x2, , xj, ,xn) ≥ 0 g2(x1, x2, , xj, ,xn) ≥ 0 (2-2) gm(x1, x2, , xj, ,xn) ≥ 0 Trong træåìng håüp haìm muûc tiãu (2-1) laì giaíi têch, khaí vi, hãû raìng buäüc (2-2) gäöm toìan âàóng thæïc vaì säú nghiãûm khäng låïn ta coï thãø duìng phæång phaïp thãú træûc tiãúp âãø giaíi bçnh thæåìng. Khi caïc hãû (2-1) vaì (2-2) tuyãún tênh vaì xi ≥ 0 ta coï thãø duìng thuáût toïan qui hoüach tuyãn tênh âãø giaíi nhæ phæång phaïp hçnh hoüc, âån hçnh, váûn taíi Vê duû : 2 2 Tçm cac ï giaï trë x1, x2 sao cho : F(x1, x2 ) = x1 + x2 → min x x thoía maîn : 1 + 2 = 1 2 3 Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 14
- Män hoüc: Váûn haình Hãû thäúng âiãûn Baìi giaíi : x x 6 − 3x Tæì 1 + 2 = 1 suy ra x = 1 2 3 2 2 Thay vaìo haìm muûc tiãu F : 2 2 2 2 ⎛ 6 − 3x1 ⎞ F(x1 , x2 ) = x1 + x2 = x1 + ⎜ ⎟ → min ⎝ 2 ⎠ Âiãöu kiãûn cæûc trë : ∂F = 0 ∂x1 ∂F 18 hoàûc laì : = 2x1 − (2 − x1 ) = 0 ∂x1 4 giaíi ra âæåüc : x1 = 18/13 vaì x2 = 12/13 Xeït âaûo haìm cáúp 2 : ∂ 2 F 18 26 2 = 2 + = > 0 ∂x1 4 4 18 12 nãn haìm F âaût cæûc trë taûi : x* = vaì x* = 1 13 2 13 vaì khi âoï giaï trë haìm muûc tiãu laì : 36 F * = opt 13 Phæång phaïp thay thãú træûc tiãúp trãn âáy chè tiãûn låüi khi hãû phæång trçnh raìng buäüc laì tuyãún tênh vaì säú læåüng m khäng låïn làõm. Trong træåìng håüp chung âãø giaíi baìi toaïn xaïc âënh cæûc trë coï raìng buäüc laì âàóng thæïc vaì tuyãún tênh thæåìng sæí duûng räüng raîi phæång phaïp nhán tæí Lagrange . Näüi dung chuí yãúu cuía phæång phaïp Lagrange nhæ sau: Cáön phaíi xaïc âënh caïc áøn säú x1, x2, , xj, ,xn sao cho: F(x1, x2, , xj, ,xn) → min (max) (2-3) vaì thoía maîn g1(x1, x2, , xj, ,xn) = 0 g2(x1, x2, , xj, ,xn) = 0 (2-4) gm(x1, x2, , xj, ,xn) = 0 trong âoï m <n Thaình láûp haìm Lagrange : m L(x1, x2 , , xn ) = F(x1, x2 , , xn ) + ∑λi .gi (x1, x2 , , xn ) (2-5) i=1 Trong âoï : λi i = 1,m laì nhæîng hãû säú khäng xaïc âënh. Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 15
- Män hoüc: Váûn haình Hãû thäúng âiãûn * Nghiãûm täúi æu X opt cuía haìm muûc tiãu F cuîng chênh laì nghiãûm täúi æu cuía haìm Lagrange L(X) vaì ngæåüc laûi vç gi(x1, x2, , xi, ,xn) = 0 våïi moüi i=1 m. Vç váûy ta cánö tçm låìi giaíi täúi æu cho haìm L(x1, x2, , xi, ,xn) Baìi toïan Larange phaït biãøu nhæ sau: Haîy xaîc âënh (x1, x2, , xi, ,xn) vaì (λ1, λ2, , λm ) sao cho : m ∂L(X ) ∂F(X ) ∂gi (X ) = + ∑λi = 0 (2-6) ∂x j ∂x j i=1 ∂x j våïi j=1 n vaì thoía maîn caïc âieìu kiãûn raìng buäüc : gi (x1, x2 , , xn ) = 0 våïi i = 1, m (2-7) Tæì (2-6) ta coï n phæång trçnh vaì tæì (2-7) coï m phæång trçnh nãn seî giaíi âæåüc (n+m) áøn säú xj vaì λi Âãø xaïc âënh haìm L(X) âaût cæûc tiãøu hay cæûc âaûi ta cáön phaíi xeït thãm âaûo haìm cáúp hai cuía F(X) hay L(X) taûi caïc âiãøm dæìng âaî giaíi ra âæåüc åí trãn: Nãúu d2L 0 thç haìm muûc tiãu seî âaût cæûc tiãuí. Ta seî giaíi laûi baìi toïan åí vê duû 1 theo phæång phaïp Lagrange : Tçm caïc nghiãûm säú x1 , x2 sao cho : 2 2 F(x1, x2 ) = x1 + x2 → min x x våïi raìng buäüc 1 + 2 = 1 2 3 Thaình láûp haìm Lagrange : m=1 L(x1, x2 ) = F(x1, x2 ) + ∑ λi .gi (x1, x2 ) i=1 x x L(x , x ) = x2 + x2 + λ ( 1 + 2 −1) 1 2 1 2 1 2 3 Xaïc âënh caïc âiãøm dæìng bàòng caïch giaíi caïc phæång trçnh : ∂L(X ) λ1 = 2x1 + = 0 ∂x1 2 ∂L(X ) λ1 = 2x2 + = 0 ∂x2 3 x x 1 + 2 −1 = 0 2 3 Giaíi hãû 3 phæång trçnh trãn âæåüc : 18 12 x* = vaì x* = 1 13 2 13 vaì khi âoï giaï trë haìm muûc tiãu laì : 36 F * = opt 13 ( nhæ kãút quaí âaî nháûn âæåüc bàòng phæång phaïp thãú ) Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 16
- Män hoüc: Váûn haình Hãû thäúng âiãûn Xeït caïc âaûo haìm báûc hai taûi âiãøm dæìng: ∂ 2 L(X ) 2 = 2 > 0 ∂x1 ∂ 2 L(X ) 2 = 2 > 0 ∂x2 nãn haìm L(X) vaì haìm muûc tiãu F(X) âaût cæûc tiãøu taûi âiãøm X* (18/13 ; 12/13). Trong træåìng håüp haìm muûc tiãu F(X) vaì caïc raìng buäüc g(X) laì nhæîng phiãúm haìm ( täön taûi tæång quan giæîa nhæîng haìm ) khi âoï tçm cæûc trë cuía caïc phiãúm haìm phaíi sæí duûng caïc baìi toïan biãún phán. Vê duû nhæ træåìng håüp tênh phán bäú täúi æu cäng suáút âäúi våïi caïc nhaì maïy thuíy âiãûn vç khi âoï phaíi xeït täúi æu trong caí chu kyì âiãöu tiãút. Baìi toïan âæåüc phaït biãøu nhæ sau : Cáön phaíi xaïc âënh caïc haìm säú x1, x2, , xi, ,xn cuía thåìi gian t sao cho haìm muûc tiãu laì phiãúm haìm âaût cæûc trë: t1 V = F(t, x1, x2 , , xn , x'1 , x'2 , , x'n ).dt → min(max) (2-8) ∫t 0 vaì thoía maîn m âiãöu kiãûn raìng buäüc : g1(t,x1, x2, , xj, ,xn) = 0 g2(t,x1, x2, , xj, ,xn) = 0 (2-9) gm(t,x1, x2, , xj, ,xn) = 0 dx Trong âoï : x' = j våïi j =1,n (2-10) j dt Thaình láûp haìm Lagrange : m L(t, x) = F(t, x) + ∑[λi (t).gi (t, x)] (2-11) i=1 sau âoï tçm cæûc trë cuía phiãúm haìm: t1 V * = ∫ F * (t, x).dt → min(max) (2-12) t0 m * våïi F (t, x) = F(t, x) + ∑λi (t).gi (t, x)] (2-13) i=1 Caïc giaï trë xj(t) våïi j = [1 n] vaì caïc hãû säú nhán λi(t) våïi i = [1 m] coï thãø nháûn âæåüc bàòng caïch giaíi hãû phæång trçnh âaûo haìm riãng cuía haìm Lagrange vaì viãút trong daûng hãû phæång trçnh Euler nhæ sau : Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 17
- Män hoüc: Váûn haình Hãû thäúng âiãûn ⎧ d f * (x ) − f * (x' ) = 0 ⎪ 1 dt 1 ⎪ ⎪ * d * ⎪ f (x2 ) − f (x'2 ) = 0 ⎨ dt (2-14) ⎪ ⎪ d ⎪ f * (x ) − f * (x' ) = 0 ⎩⎪ n dt n Trong âoï : * * ∂F f (x j ) = ; j = 1,n ∂x j (2-15) * * ∂F f (x' j ) = ; j = 1,n ∂x' j Kãút håüp n phæång trçnh cuía hãû (2-14) vaì m phæång trçnh raìng buäüc (2-9) ta seî giaíi âæåüc (m+n) giaï trë haìm xj(t) vaì λi(t) våïi j = [1 n], i = [1 m]. Ngoaìi ra âãø xaïc âënh 2n hàòng säú têch phán ta seî sæí duûng caïc âiãöu kiãûn âáöu : x j (t0 ) = x j0 ; x j (t1 ) = x j1 j = 1,n (2-16) 2.3.- PHÁN BÄÚ TÄÚI ÆU CÄNG SUÁÚT GIÆÎA CAÏC NHAÌ MAÏY NHIÃÛT ÂIÃÛN: Xeït baìi toïan : Coï n nhaì maïy nhiãût âiãûn cung cáúp cho phuû taíi täøng Ppt cäú âënh. Biãút nhæîng säú liãûu vãö âàûc tênh tiãu hao nhiãn liãûu åí tæìng nhaì maïy. Cáön phaíi xaïc âënh cäng suáút phaït täúi æu cuía mäùi nhaì maïy Pj våïi j = [1 n], sao cho chi phê nhiãn liãûu täøng trong hãû thäúng âaût cæûc tiãøu, våïi raìng buäüc vãö âiãöu kiãûn cán bàòng cäng suáút. Mä taí daûng toïan hoüc: Cáön xaïc âinh bäü nghiãûm täúi æu P*(P*1,P*2, ,P*n) sao cho haìm muûc tiãu vãö chi phê nhiãn liãûu täøng âaût cæûc tiãøu : n B = f (P1, P2 , ,Pj , ,Pn ) = ∑ B j (Pj ) → min (2-17) j=1 thoía maîn âiãöu kiãûn raìng buäüc vãö cán bàòng cäng suáút : n g(P) = P1 + P2 + + Pj + + Pn − ∆P − Ppt = ∑ Pj − ∆P − Ppt = 0 (2-18) j=1 våïi Pj ≥ 0 j = 1, n ; ∆P = const; Ppt = const (2-19) Ta giaíi bàòng phæong phaïp Lagrange : Thaình láûp haìm Lagrange : L(P) = B(P) + λg(P) (2-20) Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 18
- Män hoüc: Váûn haình Hãû thäúng âiãûn Âiãöu kiãûn âãø haìm säú L(P) âaût cæûc trë : ⎧∂L(P) ∂B(P) ∂g(P) = + λ = 0 ⎪ ∂P ∂P ∂P ⎪ 1 1 1 ⎪∂L(P) ∂B(P) ∂g(P) ⎪ = + λ = 0 ⎨ ∂P2 ∂P2 ∂P2 (2-21) ⎪ ⎪ ⎪∂L(P) ∂B(P) ∂g(P) ⎪ = + λ = 0 ⎩ ∂Pn ∂Pn ∂Pn Giaí thiãút : B(P) = B1 (P) + B2 (P) + + Bn (P) (2-22) Khi âoï : ∂B(P) ∂B1 ∂B2 ∂B j ∂Bn ∂B j = + + + + + = = ε j (2-23) ∂Pj ∂Pj ∂Pj ∂Pj ∂Pj ∂Pj ∂B våïi giaí thiãút k = 0 ; k ≠ j nghéa laì chi phê nhiãn liãûu åí nhaì maïy thæï k khäng phuû ∂Pj thuäüc vaìo cäng suáút phaït ra cuía nhaì maïy thæï j . ∂B j Ta âàût = ε j vaì goüi laì suáút tàng tiãu hao nhiãn liãûu cuía nhaì maïy thæï j, noïi lãn ∂Pj nhëp âäü tàng tiãu hao nhiãn liãûu khi tàng cäng suáút phaït Pj , εj phuû thuäüc vaìo âàûc tênh cuía loì håi vaì turbin. Tæì âiãöu kiãûn raìng buäüc : n g(P) = P1 + P2 + + Pj + + Pn − ∆P − Ppt = ∑ Pj − ∆P − Ppt = 0 (2-24) j=1 ta tênh âæåüc : ∂g(P) ∂P ∂P ∂P ∂ (P + ∆P) ∂P = 1 + 2 + + n − pt = 1 = 1 (2-25) ∂P1 ∂P1 ∂P1 ∂P1 ∂P1 ∂P1 Täøng quaït : ∂g(P) ∂P ∂P ∂P ∂P ∂ (P + ∆P) ∂P = 1 + 2 + + j + + n − pt = j =1 (2-26) ∂Pj ∂Pj ∂Pj ∂Pj ∂Pj ∂Pj ∂Pj Thay vaìo âiãöu kiãûn cæûc trë (2-21 ) ta coï hãû phæång trçnh : Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 19
- Män hoüc: Váûn haình Hãû thäúng âiãûn ⎧∂L(P) ∂B(P) ∂g(P) = + λ = ε + λ = 0 ⎪ ∂P ∂P ∂P 1 ⎪ 1 1 1 ⎪∂L(P) ∂B(P) ∂g(P) ⎪ = + λ = ε 2 + λ = 0 ⎨ ∂P2 ∂P2 ∂P2 (2-27) ⎪ ⎪ ⎪∂L(P) ∂B(P) ∂g(P) ⎪ = + λ = ε n + λ = 0 ⎩ ∂Pn ∂Pn ∂Pn Do âoï âiãöu kiãûn cæûc trë laì: ε1 + λ = ε 2 + λ = = ε n + λ = = ε n + λ = 0 (2-28) hay : ε1 = ε 2 = = ε n = = ε n (= −λ) (2-29) Âáy chênh laì nguyãn lyï phán bäú täúi æu cäng suáút giæîa caïc nhaì maïy nhiãût âiãûn trong HTÂ. Khi xem Ppt = const , ∆P = const thç âãø chi phê nhiãn liãûu täøng trong hãû thäúng nhoí nháút thç cacï nhaì maïy phaíi phaït cäng suáút Pj* täúi æu khi thoía maîn nguyãn lyï cán bàòng suáút tàng tiãu hao nhiãn liãûu εj = const. Våïi âàûc tênh suáút tàng tiãu hao nhiãn liãûu εj cuía caïc täø maïy phaït laì haìm khäng giaím khi tàng cäng suáút phaït Pj (thæûc tãú nhæ váûy) ta coï thãø chæïng minh haìm muûc tiãu B(P) âaût cæûc tiãøu bàòng caïch xeït thãm caïc âaûo haìm cáúp hai vaì coï âæåüc: 2 ∂ L(P) 2 2 ≥ 0 hay d L(P) ≥ 0 (2-30) ∂Pj Nãúu xeït täøn tháút cäng suáút phuû thuäüc vaìo cäng suáút phaït Pj nghéa laì: ∆P = ∆P(P1,P2, ,Pn) Âiãöu kiãn cæûc tiãøu cuía haìm Lagrange coï thãø viãút : ⎧∂L(P) ∂B(P) ∂g(P) ∂∆P = + λ = ε + λ(1− ) = 0 ⎪ ∂P ∂P ∂P 1 ∂P ⎪ 1 1 1 1 ⎪∂L(P) ∂B(P) ∂g(P) ∂∆P ⎪ = + λ = ε 2 + λ(1− ) = 0 ⎨ ∂P2 ∂P2 ∂P2 ∂P2 (2-31) ⎪ ⎪ ⎪∂L(P) ∂B(P) ∂g(P) ∂∆P ⎪ = + λ = ε n + λ(1− ) = 0 ⎩ ∂Pn ∂Pn ∂Pn ∂Pn Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 20
- Män hoüc: Váûn haình Hãû thäúng âiãûn Khi âoï, nguyãn lyï phán bäú cäng suáút täúi æu laì : ε ε ε 1 = 2 = = n (2-32) ∂∆P ∂∆P ∂∆P 1− 1− 1− ∂P1 ∂P2 ∂Pn ε i goüi laì suáút tàng tiãu hao NL khi coï xeït âãún täøn tháút P ∂∆P 1− ∂Pi Qua âoï cho tháúy khi ∆P = const thç cho ta kãút quaí âiãöu kiãûn phán bäú täúi æu cäng suáút nhæ âaî trçnh baìy åí trãn. Tæì nguyãn lyï cán bàòng suáút tàng tiãu hao nhiãn liãûu naìy, ta coï thãø tçm ra âæåüc nghiãûm täúi æu P* = (P*1,P*2, ,P*n). 4.4. THUÍ TUÛC PHÁN PHÄÚI TÄÚI ÆU CÄNG SUÁÚT : Viãûc phán phäúi täúi æu cäng suáút giæîa caïc nhaì maïy nhiãût âiãûn âæåüc tuán theo nguyãn lyï cán bàòng vãö suáút tàng tiãu hao nhiãn liãûu ε. Suáút tàng ε thãø hiãûn nhëp âäü tiãu täún nhiãn liãûu khi tàng cäng suáút P phaït ra. Vç váûy theo nguyãn lyï phán phäúi trãn âáy âãø âaût cæûc tiãøu nhiãn liãûu tiãu hao trong toaìn hãû thäúng, nhaì maïy coï ε nhoí seî nháûn phaït nhiãöu cäng suáút vaì nhaì maïy coï ε låïn (nghéa laì laìm viãûc khäng kinh tãú) seî phaíi phaït êt cäng suáút. Nguyãn lyï naìy thãø hiãûn tênh cäng bàòng trong phán phäúi täúi æu. Cáön quan tám nhæîng âàûc âiãøm sau: 4.4.1. Suáút tàng tiãu hao nhiãn liãûu ε vaì suáút tiãu hao nhiãn liãûu γ: Cáön phaíi phán biãût roî suáút tàng tiãu hao nhiãn liãûu ε vaì suáút tiãu hao nhiãn liãûu γ. ÆÏng våïi mäùi nhaì maïy nhiãût âiãûn coï thãø xáy dæûng âæåüc âæåìng âàûc tênh tiãu hao nhiãn liãûu B phuû thuäüc cäng suáút phaït ra P nhæ hçnh 2-1. Giaí sæí täø maïy phaït âang laìm viãûc åí âiãøm a : Ba ==γa tgα (2-33) Pa γa: goüi laì suáút tiãu hao nhiãn liãûu cuía nhaì maïy æïng våïi âiãøm a [kg n.lieu/KWh ] dB ε a = = tgβ [kg n.lieu/KWh](2-34) dPa εa: goüi laì suáút tàng tiãu hao nhiãn liãûu. Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 21
- Män hoüc: Váûn haình Hãû thäúng âiãûn Hçnh 2-1 Tæì O veî tiãúp tuyãún Ob, âiãøm b goüi laì âiãøm laìm viãûc kinh tãú, taûi âiãøm laìm viãûc naìy cäng suáút phaït laì Pkt æïng våïi chi phê nhiãn liãûûu laì Bkt . Khi P > Pkt thç theo âàûc tênh ta tháúy suáút tàng tiãu hao nhiãn liãûu tàng nhanh, caìng tiãu hao nhiãn liãûu. Vç váûy theo quan âiãøm kinh tãú âãø tiãút kiãûm nhiãn liãûu chè váûn haình våïi P <= Pkt. Taûi âiãøm laìm viãûc kinh tãú ta coï: dB B(Pkt ) (Pkt ) = dP Pkt Nghéa laì suáút tiãu hao nhiãn liãûu bàòng suáút tàng tiãu hao nhiãn liãûu. Vê duû: Xem baíng sau Phuû taíi hãû thäúng Tiãu hao nhiãn liãûu Suáút tiãu hao Suáút tàng tiãu hao P [MW] B [táún/h] γ [kg/kWh] ε [kg/kWh] 2500 1050 0,420 0,200 2600 1070 0,412 5000 2000 0,400 0,700 5100 2070 0,406 Theo baíng trãn, åí thåìi âiãøm P = 2500 MWh caïc giaï trë suáút tiãu hao vaì suáút tàng B 1050 γ = = = 0,420 kg/kWh P 2500 ∆B 1070 −1050 ε ≈ = = 0,200 kg/kWh ∆P 2600 − 2500 tiãu hao âæåüc tênh nhæ sau: 4.4.2. Âàûc tênh suáút tàng tiãu hao nhiãn liãûu cuía täø loì-tuabin-maïy phaït: dB dB dQ ε = = . = ε .ε dP dQ dP L T Hçnh 2-2 dB ε = - goüi laì suáút tàng tiãu hao nhiãn liãûu cuía loì håi [Kg n.lieu/Kcalo] L dQ Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 22
- Män hoüc: Váûn haình Hãû thäúng âiãûn dQ ε = - goüi laì suáút tàng tiãu hao nhiãn liãûu cuía tuäúcbin [Kcalo/KWh] L dP Âæåìng âàûc tênh suáút tàng tiãu hao nhiãn liãûu cuía loì håi εL thæåìng coï daûng âæåìng cong (hçnh 2-3a) tuìy thuäüc caïc loaûi loì håi khaïc nhau. Hçnh 2-3 Âæåìng âàûc tênh tiãu hao nhiãût læåüng Q cuía turbin trong nhiãöu træåìng håüp coï daûng gáön tuyãún tênh (hçnh 2-3b). Âæåìng âàûc tênh coï chäù gaîy khuïc æïng våïi giaï trë Pkt, âiãöu âoï giaíi thêch khi van quaï taíi måí, nhiãût læåüng tàng nhanh vaì tênh kinh tãú giaím âäüt ngäüt. Âæåìng âàûc tênh suáút tàng tiãu hao nhiãût læåüng cuía turbin εT laì giaï trë âaûo haìm cuía âæåìng Q theo P. Tæì caïc âæåìng εT vaì εL xáy dæûng âæåüc âæåìng âàûc tênh suáút tàng tiãu hao nhiãn liãûu ε cuía täø maïy nhæ hçnh 2-3c. Ngoaìi ra âãø xáy dæûng âàûc tênh suáút tàng tiãu hao nhiãn liãûu cuía täø maïy hoàûc nhaì maïy âiãûn coï thãø thæûc hiãûn bàòng caïch thäúng kã caïc táûp säú liãûu B vaì P trong caïc chãú âäü váûn haình khaïc nhau vaì nhåì caïc phæång phaïp gia cäng toaïn hoüc, chàóng haûn phæång phaïp bçnh phæång cæûc tiãøu xáy dæûng âæåüc quan hãû giaíi têch B = B(P). Tæì âoï xaïc âënh âæåüc âàûc tênh suáút tàng tiãu hao nhiãn liãûu. 4.4.3.Thuí tuûc phán phäúi täúi æu cäng suáút : Xeït træåìng håüp täøn tháút cäng suáút laì hàòng säú, khäng phuû thuäüc vaìo cäng suáút phaït cuía caïc nhaì maïy. Giaí sæí ta cáön phaíi phán phäúi cäng suáút Ppt cho n nhaì maïy, ta tiãún haình nhæ sau: - Våiï mäùi nhaì maïy ta xáy dæûng âæåüc quan hãû suáút tàng tiãu hao nhiãn liãûu phuû thuäüc vaìo cäng suáút phaït εj = εj(Pj) våïi j = [1 n] bàòng daûng giaíi têch hoàûc bàòng säú cho theo baíng . - Dæûa trãn caïc âæåìng cong εj ta xáy dæûng âæåüc âæåìng cong ε(P) cuía toaìn hãû thäúng gäöm n nhaì maïy, bàòng caïch giæî nguyãn trë säú ε trãn truûc tung, cäüng n giaï trë cäng suáút P trãn truûc hoìanh. - Càn cæï vaìo phuû taíi täøng cäüng Ppt cáön cung cáúp kãø caí täøn tháút cäng suáút ∆P (trong tênh toïan så bäü coï thãø láúy bàòng 0,07 - 0,12 Ppt ), nhæ caïch laìm mä taí trãn hçnh veî ta xaïc Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 23
- Män hoüc: Váûn haình Hãû thäúng âiãûn âënh âæåüc caïc giaï trë täúi æu cäng suáút phaït ra tæì caïc nhaì maïy âiãûn Pj* thoía maîn âiãöu kiãûn cán bàòng suáút tàng tiãu hao nhiãn liãûu: εε12== =ε n = = ε n (= − λ ) vaì thoía maîn âiãöu kiãûn cán bàòng cäng suáút. * * * * P1 + P2 + + PJ + + PN = ∆P + Ppt Ta nháûn tháúy nhaì maïy naìo coï suáút tàng tiãu hao nhiãn liãûu caìng nhoí thç nháûn caìng nhiãöu cäng suáút. Khi tiãnú haình thuí tuûc phán phäúi nhæ trãn cáön phaíi chuï yï: 1. Khi giaï nhiãn liãûu åí nhaì maïy thæï i naìo âoï khaïc giaï nhiãn liãûu tiãu chuáøn thç cáön hiãûu chènh εi thaình ε‘i theo : ai ε'i = ε i . a0 Trong âoï : ai laì giaï nhiãn liãûu cuía nhaì maïy thæï i vaì a0 laì giaï nhiãn liãûu tiãu chuáøn, tæì âoï ta tháúy ràòng nhaì maïy naìo coï giaï nhiãn liãûu caìng âàõt thç chè nãn phaït êt cäng suáút. 2. Coï thãø xaíy ra træåìng håüp ε tçm ra nhoí hån ε æïng våïiï cäng suáút cæûc tiãøu Pmin hoàûc låïn hån ε æïng våïi cäng suáút cæûc âaûi cho pheïp Pmax thç khi âoï chè cho nhaì maïy nháûn cäng suáút Pmin hoàûc Pmax vç âoï laì giåê haûn khaí nàng phaït cäng suáút cuía nhaì maïy. 3. Thæåìng trong thæûc tãú váûn haình ngæåìi ta chè cho baíng suáút tàng tiãu hao nhiãn liãûu ε vaì Pi thay cho âæåìng âàûc tênh âãø dãùî phán bäú hån. Khi phuû taíi tàng lãn thç theo nguyãn lyï phán phäúi täúi æu ta seî âãø nhaì maïy coï ε nhoí nháûn thãm cäng suáút træåïc, nhæng cuäúi cuìng cuîng phaíi âaím baío εi bàòng nhau våïi moüi nhaì maïy thæï i vaì phaíi âaïp æïng âáöy âuí phuû taíi. 4.5. PHÁN BÄÚ CÄNG SUÁÚT TÄÚI ÆU GIÆÎA NHIÃÛT ÂIÃÛN VAÌ THUÍY ÂIÃÛN: Trong váûn haình khäng phaíi nhaì maïy thuíy âiãûn luän luän phaït hãút cäng suáút laì täúi æu màûc duì noï coï nhiãöu æu âiãøm laì giaï thaình âiãûn nàng reí, khäng tiãu hao nhiãn liãûu Chè tiãu täúi æu cuía sæû phán bäú cäng suáút trong hãû thäúng gäöm caïc nhaì maïy thuíy âiãûn vaì nhiãût âiãûn laì laìm cæûc tiãøu chi phê nhiãn liãûu åí nhiãût âiãûn, âäöng thåìi phaíi thoía maîn âiãöu kiãûn thuíy nàng åí nhaì maïy thuíy âiãûn. Chãú âäü täúi æu chè xeït âäúi våïi nhængî thuíy âiãûn coï häö chæïa næåïc, nghéa laì coï khaí nàng âiãöu chènh doìng chaíy vaìo tuäc bin ( goüi laì khaí nàng âiãöu tiãút ) Chu kyì âiãöu tiãút laì thåìi gian giæîa 2 láön thaïo næåïc vaì træî næåïc kãú tiãúp nhau. Tuìy theo dung têch häö chæïa thæåìng phán nhaì maïy thuíy âiãûn âiãöu tiãút theo ngaìy, tuáön, muìa, nàm hoàûc nhiãöu nàm. Trong mäüt chu kyì âiãöu tiãút læåüng næåïc tiãu phê cho nhaì maïy thuíy âiãûn laì khäng âäøi vaì âæåüc xaïc âënh båíi nhæîng âiãöu kiãûn vãö thuíy låüi, thåìi tiãút v.v Vç váûy chãú âäü laìm viãûc täúi æu cuía thuíy âiãûn phaíi xeït trong toìan bäü chu kyì âiãöu tiãút vaì âiãöu kiãûn raìng buäüc åí âáy chênh laì læåüng næåïc tiãu hao âaî qui âënh. Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 24
- Män hoüc: Váûn haình Hãû thäúng âiãûn Ngoaìi ra coï nhæîng thåìi gian nhaì maïy thuíy âiãûn buäüc phaíi laìm viãûc theo chãú âäü giåïi haûn vaì váún âãö phán bäú cäng suáút täúi æu khäng cáön âàût ra. Chàóng haûn âäúi våïi thuíy âiãûn chè âãø phaït âiãûn khäng coï yãu cáöu vãö giao thäng, thuíy låüi åí thåìi âiãøm phuû taíi cao âiãøm phaíi âaím nháûn phuû taè âènh ( cáön phaíi tiãút kiãûm næåïc åí muìa næåïc caûn ), hoàûc thuíy âiãûn khäng coï häö chæïa, häö chæïa nhoí phaíi táûn duûng hãút thuíy nàng nãn phaíi phaït hãút cäng suáút nghéa laì nháûn pháön phuû taíi nãön (xem giaïo trçnh Nhaì Maïy Âiãûn ). Ta xeït træåìng håüp : Coï n nhaì maïy thuyí âiãûn laìm viãûc trong hãû thäúng cuìng våïi mäüt säú nhaì maïy nhiãût âiãûn maì ta xem nhæ mäüt nhaì maïy nhiãût âiãûn âàóng trë theo âiãöu kiãûn cán bàòng suáút tàng tiãu hao nhiãn liãûu ε. Goüi B laì læåüng tiãu hao nhiãn liãûu åí nhaì maïy nhiãût âiãûn âàóng trë trong mäüt âån vë thåìi gian. ( âån vë laì táún/h ) , B = B(t, PND , PND ) (2-35) Vç xeït trong chu kyì âiãöu tiãút nãn ta phaíi xeït B coìn phuû thuäüc vaìo t vaì xeït caí sæû thay âäøi cuía PNÂ theo thåìi gian t : dP P, = ND ND dt Goüi Qi laì læu læåüng næåïc tiãu hao trong mäüt âån vë thåìi gian åí nhaì maïy thuíy âiãûn thæï i [ m3/s ]. , Qi = Qi (t, PTDi , PTDi ) voi i = 1,n (2-36) Læåüng næåïc qui âënh âäúi våïi thuíy âiãûn thæï i trong chu kyì âiãöu tiãút T: T Wi = Qi .dt ∫0 Khi âoï baìi toïan âæåüc phaït biãøu nhæ sau : Xaïc âënh cäng suáút phaït cuía nhaì maïy nhiãût âiãûn âàóng trë PNÂ vaì cuía caïc nhaì maïy thuíy âiãûn PTÂ1, PTÂ2, , PTÂn sao cho âaût cæûc tiãøu haìm muûc tiãu vãö chi phê nhiãn liãûu: T B(t, P ,P, ).dt → min (2-37) ∫0 NÂ NÂ thoía maîn caïc raìng buäüc vãö læåüng næåïc tiãu hao âäúi våïi caïc nhaì maïy thuíy âiãûn: T , Q1(t, P , P ).dt = W1 ∫0 TÂ1 TÂ1 T , Q2 (t, P , P ).dt = W2 ∫0 TÂ2 TÂ2 (2-38) T , Qn (t, P , P ).dt = Wn ∫0 TÂn TÂn vaì thoía maîn raìng buäüc vãö âiãöu kiãûn cán bàòng cäng suáút: g(t, P) = PND + PTD1 + PTD2 + + PTDn − Ppt − ∆P = 0 (2-39) Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 25
- Män hoüc: Váûn haình Hãû thäúng âiãûn Ta giaíi baìi toïan täúi æu naìy theo phæång phaïp Lagrange nhæ âaî trçnh baìy åí muûc 2.2. Træåïc hãït ta láûp phiãúm haìm Lagrange: T T T L(t, P) = B(t, P).dt +λ1 Q1 (t, P).dt + + λn Qn (t, P).dt + λt g(t, P) ∫0 ∫0 ∫0 Trong âoï: λ1, λ2, , λn : laì nhæîng hãû säú khäng xaïc âënh âæa vaìo caïc phæång trçnh raìng buäüc theo âiãöu kiãûn læu læåüng næåïc. λt : hãû sä ú khäng xaïc âënh âæa vaìo phæång trçnh raìng buäüc cán bàòng cäng suáút. Tæì âáy tçm cæûc tiãøu cuía phiãúm haìm L(t,P) : T n L(t, P) = [B(t, P) + λiQi (t, P) + λt g(t, P)].dt → min ∫0 ∑ i=1 n * Âàût F (t,P) = B(t,P) + ∑λiQi (t, P) + λt g(t,P) i=1 thç T L(t, P) = F * (t, P).dt → min (2-40) ∫0 Âãø tçm nghiãûm cuía baìi toïan ta láûp hãû phæång trçnh Euler dæåïi daûng: * d * f Pi − f Pi' = 0 (2-41) dt Trong âoï : Pi laì cäng suáút cuía nhaì maïy nhiãût âiãûn âàóng trë PNÂ vaì caïc nhaì maïy thuíy âiãûn PTÂ1, PTÂ2, ,PTÂn. Pi’ laì caïc âaûo haìm P’NÂ,P’TÂ1, P’TÂ2, ,P’TÂn * ∂F *(t, P) * ∂F *(t, P) f Pi = vaì f Pi' = (2-42) ∂Pi ∂P'i Ta âæåüc hãû phæång trçnh Euler daûng : ⎧ ∂B d ∂B ∂∆P − + λ (1− ) = 0 ⎪∂P dt ∂P' t ∂P ⎪ ND ND ND ⎪ ∂Q1 d ∂Q1 ∂∆P ⎪λ1 ( − + λt (1− ) = 0 ⎨ ∂PTD1 dt ∂P'TD1 ∂PTD1 (4-43) ⎪ ⎪ ⎪ ∂Qn d ∂Qn ∂∆P ⎪λn ( − + λt (1− ) = 0 ⎩ ∂PTDn dt ∂P'TDn ∂PTDn våïi giaí thiãút : Ppt = hàõng säú Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 26
- Män hoüc: Váûn haình Hãû thäúng âiãûn Ta kê hiãûu : ∂B = ε - goüi laì suáút tàng tiãu hao nhiãn liãûu åí nhaì maïy nhiãût âiãnû ∂PND trong chãú âäü xaïc láûp. ∂Q1 ∂Q2 -laì suáút tàng tiãu hao næåïc åí nhaì maïy thuíy âiãûn = q1 , = q2 , ∂PTD1 ∂PTD2 1,2, trong chãú âäü xaïc láûp. Nháûn tháúy caïc thaình pháön : d ∂B d ∂Qi − . = ε' vaì − . = q'i dt ∂P'ND dt ∂P'TD xuáút hiãûn trong quaï trçnh biãún âäøi chãú âäü laìm viãûc cuía hãû thäúng vaì ε’i, q’i phuû thuäüc vaìo täúc âäü biãún âäøi theo thåìi gian cuía cäng suáút nhaì maïy âiãûn. Thæåìng ta giaí thiãút ε’i = 0, q’i = 0 ; khi âoï tæì hãû phæång trçnh (4-43) khæí λt ta coï : ε q q = λ 1 = = λ n (4-44) ∂∆P 1 ∂∆P 1 ∂∆P 1− 1− 1− ∂PND ∂QTD1 ∂QTDn Nãúu xem täøn tháút cäng suáút khäng âäøi thç: ε = λ1.q1 = λ2.q2 = = λn .qn (4-45) Âáy laì nguyãn lyï “cäng bàòng” cuía viãûc phán bäú täúi æu cäng suáút giæîa caïc nhaì maïy âiãûn theo suáút tàng tiãu hao nhiãn liãûu, trong âoï âäúi våïi thuíy âiãûn i coï âaûi diãûn laì suáút tàng âàóng trë laì λi.qi. Nhæîng gêa trë cuía λi laì nhæîng hàòng säú æïng våïi nhaì maïy thuyí âiãûn i vaì âæåüc choün trong chu kyì âiãuì tiãút nhàòm thoía maîn âiãöu kiãûn täúi æu cuía baìi toïan âaî nãu. Sau âáy ta seî xeït thãm yï nghéa cuaí caïc hãû säú λi vaì xáy dæûng thuí tuûc phán phäúi cäng suáút täi æu giæîa nhiãût âiãûn vaì thuíy âiãûn. 4.6. ÂÀÛC ÂIÃØM VAÌ THUÍ TUÛC PHÁN PHÄÊ: 4.6.1. YÏ nghéa cuía hãû säú λ Trong træåìng håüp âån giaín khi khäng xeït âãún sæû thay âäúi cuía cäng suáút trong maûng âiãûn, tæì biãøu thæïc (4-45) ta coï : ε dB dQi λi = = : (4-46) qi dPnd dPtdi Giaí thiãút ràòng sæû thay âäøi cäng suáút phaït ra åí nhaì maïy thuíy âiãûn thæï i laì do thay âäøi cäng suáút phaït ra åí nhaì maïy nhiãût âiãûn, chàóng haûn khi nhiãût âiãûn phaït cäng suáút giaím âi thç thuíy âiãûn i phaíi phaït cäng suáút tàng lãn. Mäüt caïch gáön âuïng vãö giaï trë tuyãût âäúi ta xem nhæ : dPtâ = dPnâ. Nhæ váûy täøng quaït ta coï thãø viãút : Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 27
- Män hoüc: Váûn haình Hãû thäúng âiãûn dB λi = voi i = 1,2 n (4-47) dQi Nhæ váûy λi âæåüc âënh nghéa laì sæû biãún âäøi cuía tiãu hao nhiãn liãûu åí nhaì maïy nhiãût âiãûn theo sæû thay âäøi cuía læu læåüng næåïc åí nhaì maïy thuíy âiãûn i. Thæï nguyãn cuí λi laì [ táún nhiãn liãûu/m3 næåïc ] vaì chênh λi laì chè tiãu phaín aïnh hiãûu quaí sæí duûng næåïc åí nhaì maïy thuíy âiãn i. Khi thuíy âiãûn laìm viãûc våïi λ låïn thç nhiãn liãûu tiãút kiãûm âæåüc åí nhiãût âiãûn trãn 1m3 næåïc caìng nhiãöu, do âoï λ goüi laì hãû säú hiãûu quaí sæí duûng nàng læåüng cuía thuíy âiãûn. Ngoaìi ra cáön chuï yï ràòng âãø coï chãú âäü laìm viãûc täúi æu gêa trë λi cuía mäùi nhaì maïy thuíy âiãûn sau khi xaïc âënh cáön giæî khäng âäøi trong suäút chu kyì âiãöu tiãút. Âiãöu âoï âæåüc giaíi thêch nhæ sau : Giaí thiãút åí thåìi âiãøm naìo âoï gêa trë λi âæåüc choün tàng lãn. Khi âoï âãø tiãút kiãûm nhiãn liãûu åí nhiãût âiãûn cáön tàng cäng suát phaït åí thuíy âiãûn i. Nhæng vç læåüng næåïc trong chu kyì âiãöu tiãút âaî xaïc âënh nãn khi tàng cäng suáút thuíy âiãûn seî tàng læåüng næåïc tiãu hao vaì bàõt buäüc phaíi giaím cäng suáút åí thåìiì âiãøm khaïc. Màût khaïc, cäng suáút phaït cuía thuíy âiãûn i tàng lãn, thæåìng giaï trë cuía suáút tàng tiãu hao næåïc qi cuía noï seî tàng, khi âoï do cäng suáút phaït cuía nhiãût âiãûn gèam âi nãn giaï trë cuía ε giaím, vç váûy λ = ε/q laiû cáön phaíi choün giaím âi. Toïm laûi, khi tàng λi ta cáön phaíi tàng Ptâi, nhæng khi Ptâi tàng ( Pnâ gèam ) seî laìm giaím λi vaì khi λi giaím âãø tiãút kiãûm nhiãn liãûu ta laûi cáön phaíi giaím Ptâi vaì laûi dáùn âãún tàng λi. Quaï trçnh tiãúp tuûc cho âãún khi λi tråí vãö giaï trë khäng âäøi ban âáöu. 4.6.2. Thuí tuûc phán phäúi täúi æu cäng suáút giæîa nhiãût âiãûn vaì thuíy âiãûn: Viãûc phán phäúi täúi æu cäng suáút giæîa nhaì maïy nhiãût âiãûn vaì thuíy âiãûn trong HTÂ dæûa trãn nguyãn lyï cán bàòng suáút tàng tiãu hao nhæ trãn biãøu thæïc (4-45). Thuí tuûc phán phäúi tiãún haình nhæ sau: - Âäúi våïi caïc nhaì maïy nhiãût âiãûn càn cæï vaìo nguyãn lyï cán bàòng suáút tàng tiãu hao nhiãn liãûu, xáy dæûng âæåìng âàûc tênh ε cho nhaì maïy nhiãût âiãûn âàóng trë (hçnh 2-4). - Âäúi våïi tæìng nhaì maïy thuíy âiãûn, càn cæï vaìo læåüng tiãu hao næåïc Qi vaì cäng suáút phaït Ptâi ta xáy dæûng âæåìng âàûc tênh suáút tàng tiãu hao næåïc qi. - Træåïc hãút khaío saït træåìng håüp âån giaín nháút laì moüi giaï trë λi laì nhæîng hàòng säú âaî cho, xáy dæûng caïc âæåìng âàûc tênh λiqi cho caïc nhaì maïy thuíy âiãûn i=1,2, ,n (hçnh 2- 4). - Tæì giaï trë phuû taíi täøng cuía hãû thäúng Ppt kãø caíì täøn tháút trong maûng trãn âäö thë suáút tàng tiãu hao nhiãn liãûu täíng εHT (hçnh 2-4 ) ta xaïc âënh caïc giaï trë täúi æu vãö cäng suáút cuía nhiãût âiãûn vaì caïc thuíy âiãûn P*nâ,P*tâ1,P*tâ2, ,P*tân. Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 28
- Män hoüc: Váûn haình Hãû thäúng âiãûn ε λ1q1 λnqn P*TÂn P*NÂ PNÂ P*TÂ1 PTÂ1 PTÂn Hçnh 2-4 Tuy nhiãn trong thæûc tãú thæåìng caïc gêa trë cuía λi cuía thuíy âiãûn phaíi xaïc âënh theo âiãöu kiãûn täúi æu maì khäng biãút træåïc, vç váûy thuí tuûc phæïc taûp hån. Nhæ âaî phán têch, chãú âäü laìm viãûc täúi æu cuía caïc nhaì maïy thuíy âiãûn phaíi âaím baío 2 muûc tiãu : - Âaût cæûc tiãøu tiãu hao nhiãn liãûu trong caïc nhaì maïy nhiãût âiãûn. - Âaût læåüng tiãu hao næåïc Wi trong chu kyì âiãuì tiãút nhæ qui âënh. Tæì âáy tháúy ràòng phaíi choün caïc giaï trë λi mäüt caïch håüp lyï. Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 29
- Män hoüc: Váûn haình Hãû thäúng âiãûn Hçnh 2-6 Hçnh 2-5 Tæì hçnh 2- 4 ta tháúy ràòng nãúu åí nhaì maïy thuíy âiãûn i naìo âoï nãúu choün giaï trë λi låïn thç âæåìng âàûc tênh λiqi náng cao lãn do âoï cäng suáút phaït cuía thuíy âiãûn thæï i seî giaím âi vaì dáùn âãún læåüng næåïc trong chu kyì âiãöu tiãút nhoí hån qui âënh. Vç váûy trong træåìng håüp täøng quaït thuí tuûc phán phäúi täúi æu cäng suáút giæîa nhiãût âiãûn vaì n nhaì maïy thuíy âiãûn âæåüc tiãún haình gáön âuïng theo thuáût toïan trãn så âäö hçnh 2-5. Trong mäüt säú træåìng håüp do khoï dæû baïo chênh xaïc læåüng næåïc trong chu kyì âiãöu tiãút daìi nãn thæåìng xaïc âënh chãú âäü laìm viãûc cuía thuíy âiãûn theo læåüng næåïc tiãu hao trung bçnh trong mäüt ngaìy âãm Qtb . Våïi Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 30
- Män hoüc: Váûn haình Hãû thäúng âiãûn nhæîng giaï trë λ choün khaïc nhau, giaï trë cuía QtbB B ta coï thãø xáy dæûng theo âæåìng âàûc tênh nhæ hçnh 2-6, dæûa theo âäö thë phuû taíi cuía thuíy âiãûn. Tæì âáúy cuîng tháúy ràòng khi choün λ låïn, cäng suáút PTÂB B seî nhoí, dáùn âãún QtbB B nhoí . Trong træåìng håüp coï mäüt nhaì maïy thuíy âiãûn, viãûc xaïc âënh giaï trë λ coï thãø âån gèan suy tæì giaï trë QtbB B qui âënh. Khi coï nhiãöu thuíy âiãûn viãûc xáy dæûng caïc âæåìng QtbB B cuîng phæïc taûp, luïc âoï thæåìng choün caïc hãû säú λiB B theo phæång phaïp dáön âuïng nhæ âaî nãu . Cáön chuï yï ràòng caïc giaï trë λ âæåüc choün coï tuìy thuäüc vaìo tênh thåìi tiãút. Chàóng haûn vaìo muìa næåïc låïn khi häö khäng chæïa hãút toaìn bäü læåüng doìng chaíy, cáön choün λ nhoí, coï thãø dáùn âãún λqB B nhoí hån caí giaï trë cæûc tiãøu cuía ε nhiãût âiãûn, nhæ váûy QTÂB B seî låïn, thuíy âiãûn seî phaït toaìn bäü cäng suáút, nhiãût âiãûn chè âaím baío pháön phuû taíi coìn laûi. Tæång tæû khi næåïc caûn coï thãø thæûc hiãûn choün λ låïn . Trãn âáy khi xeït chãú âäü laìm viãûc täúi æu cuía nhiãût âiãûn vaì thuíy âiãûn chè nhàòm thoía maín chè tiãu cæûc tiãøu chi phê nhiãn liãûu vaì âaím baío cäng suáút phuû taíi hãû thäúng. Trong thæûc tãú viãûc choün caïc tham säú coìn phaíi thoía maín nhæîng chè tiãu khaïc nhæ mæïc næåïc qui âënh åí haû læu phaíi âaím baío, caïc chè tiãu vãö cháút læåüng âiãûn nàng nhæ âiãûn aïp v.v Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 31
- Män hoüc: Váûn haình Hãû thäúng âiãûn Chæång 3 TÊNH TOAÏN PHÁN BÄÚ TÄÚI ÆU CÄNG SUÁÚT TRONG HÃÛ THÄÚNG ÂIÃÛN BÀÒNG PHÆÅNG PHAÏP QUI HOAÛCH ÂÄÜNG 3.1. MÅÍ ÂÁÖU Quy hoaûch âäüng laì mäüt phæång phaïp quy hoaûch toaïn hoüc nhàòm tçm låìi giaíi täúi æu cuía quaï trçnh nhiãöu bæåïc (hoàûc nhiãöu giai âoaûn). Tênh tæì “âäüng” åí âáy nhàòm nháún maûnh vai troì thåìi gian vaì sæû xuáút hiãûn daîy caïc quyãút âënh trong quaï trçnh giaíi baìi toaïn, cuîng nhæ thæï tæû caïc pheïp toaïn coï yï nghéa quan troüng. Quaï trçnh khaío saït âæåüc chia thaình nhiãöu bæåïc, åí mäùi bæåïc ta sæí duûng mäüt quyãút âënh. Quyãút âënh åí bæåïc træåïc coï thãø âiãöu khiãøn quaï trçnh åí bæåïc sau. Nhæ váûy quy hoaûch âäüng taûo nãn mäüt daîy quyãút âënh. Daîy quyãút âënh âoï goüi laì saïch læåüc (hoàûc coï khi laì chiãún læåüc). Saïch læåüc thoía maîn muûc tiãu quy âënh goüi laì saïch læåüc täúi æu. Chè tiãu täúi æu phaíi thãø hiãûn âäúi våïi toaìn bäü quaï trçnh nhiãöu bæåïc. Sau âáy âãø chuáøn bë tçm hiãøu näüi dung cå baín cuía phæång phaïp quy hoaûch âäüng ta khaío saït mäüt thê duû vãö quaï trçnh âiãöu khiãøn nhiãöu bæåïc. Giaí thiãút cáön tçm mäüt saïch læåüc täúi æu âãø phán phäúi nguäön väún ban âáöu X cho mäüt hãû thäúng k xê nghiãûp hoaût âäüng trong n nàm sao cho låüi nhuáûn thu âæåüc tæì k xê nghiãûp âoï sau n nàm laì cæûc âaûi. ÅÍ âáy nguäön väún X coï thãø laì nguäön váût tæ, sæïc lao âäüng, cäng suáút âàût cuía maïy moïc .v.v Ngoaìi ra baìi toaïn coï thãø xáy dæûng theo nhæîng muûc tiãu khaïc nhæ chi phê vãö nhiãn liãûu laì cæûc tiãøu, hiãûu quaí täøng vãö lao âäüng laì cæûc âaûi v.v Saïch læåüc täúi æu åí âáy laì bäü giaï trë nguäön väún âáöu tæ cho tæìng nhaì maïy åí mäùi nàm sao cho låüi nhuáûn täøng sau n nàm laì cæûc âaûi. (i) Giaí thiãút goüi Xj laì giaï trë nguäön väún âáöu tæ cho xê nghiãûp i åí âáöu nàm j, trong âoï i = 1,2 k vaì j = 1,2 n, ngoaìi ra thoía maîn âiãöu kiãûn vãö cán bàòng nguäön väún åí mäùi nàm : k ()i ∑ X j = Xj : j = 1, 2 , n (3-1) t =1 trong âoï Xj laì nguäön väún täøng coìn laûi, âàût vaìo nàm j cho k xê nghiãûp. Låüi nhuáûn täøng cuía k xê nghiãûp sau n nàm kyï hiãûu laì W, giaï trë cuía W phuû thuäüc vaìo nguäön väún ban âáöu X vaì säú nàm hoaût âäüng n. Coï thãø biãøu diãùn W laì haìm cuía caïc (i) giaï trë Xj (i) (i) (i) W(X,n) = W(X1 , X2 , Xn ) (3-2) Âáy laì baìi toaïn âiãøn hçnh cuía quy hoaûch âäüng vaì coï thãø phaït biãøu nhæ sau : (i) Xaïc âënh táûp giaï trë {X j }; i = 1,2 ,k; j = 1, 2 , ,n sao cho : W(X,n) ⇒ max (3-3) vaì thoía maîn : k ()i ∑ X j = Xj : j = 1, 2 , n (3-4) t =1 Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 31
- Män hoüc: Váûn haình Hãû thäúng âiãûn (i) X j ≥ 0 (3-5) trong âoï biãøu thæïc (3-3) åí træåìng håüp naìy coï thãø biãøu diãùn bàòng täøng låüi nháûn cuía n nàm, nghéa laì : k W(X,n) = ∑ Wj ()X j (3-6) t = 1 trong âoï Wj laì låüi nhuáûn cuía k xê nghiãûp åí nàm thæï j. Nhæ váûy haìm muûc tiãu W(X,n) coï daûng mäüt täøng, âáy laì mäüt daûng thuáûn låüi khi sæí duûng phæång phaïp quy hoaûch âäüng. ÅÍ âáy giaí thiãút ràòng nguäön väún X âæa vaìo nàm âáöu tiãn cho k xê nghiãûp vaì haìng nàm khäng âæåüc bäø sung. Khäng nhæîng thãú læåüng nguäön väún cuía mäùi xê nghiãûp qua tæìng nàm âãöu bë hao huût do sæí duûng âãø saín xuáút sinh låüi nhuáûn, nghéa laì âäúi våïi xê nghiãûp i coï : (i) ()i (i) (i) X 1 > X 2 > > X j > > X n (3-7) Låìi giaíi täúi æu åí âáy âæåüc xaïc âënh nhåì giaíi quyãút máu thuáùn sau âáy : Thæåìng xê nghiãûp saín xuáút âem laûi låüi nhuáûn nhiãöu laûi coï tyí lãû hao huût vãö nguäön väún cao (hæ hoíng maïy moïc, sæí duûng nhiãöu váût tæ, thiãút bë, lao âäüng). Ngoaìi ra cáön âàûc biãût læu yï laì låüi nhuáûn cuía k xê nghiãûp phaíi âaût giaï trë cæûc âaûi sau n nàm, maì khäng phaíi chè xeït tæìng nàm riãng reî. Baìi toaïn xaïc âënh saïch læåüc täúi æu phán phäúi nguäön väún X cho k xê nghiãûp saín xuáút trong n nàm trãn âáy coï thãø giaíi quyãút theo hai hæåïng : (i) + Hæåïng thæï nháút : Xaïc âënh âäöng thåìi bäü giaï trë {X j } âãø haìm låüi nhuáûn W(W1, W2 , Wn) âaût giaï trë cæûc âaûi trong khäng gian n chiãöu. Trong træåìng håüp n nhoí, caïc haöm Wj laì giaíi têch, khaí vi, baìi toaïn coï thãø giaíi âæåüc nhåì nhæîng pheïp tênh vi, têch phán. Khi n låïn (chàóng haûn n = 10) baìi toaïn âaî tråí nãn ráút phæïc taûp. + Hæåïng thæï hai : Giaíi quyãút baìi toaïn trãn âáy theo tæìng bæåïc. Hæåïng naìy cho thuáût toaïn âån giaín hån, âàûc biãût trong træåìng håüp säú bæåïc n (säú giai âoaûn, säú nàm) laì låïn. Hæåïng naìy thãø hiãûn näüi dung tinh tháön cuía phæång phaïp quy hoaûch âäüng : Viãûc täúi æu hoïa âæåüc thæûc hiãûn dáön tæìng bæåïc, nhæng phaíi âaím baío nháûn âæåüc låìi giaíi täúi æu cho caí n bæåïc. Âoï laì mäüt âàûc âiãøm quan troüng vãö nguyãn lyï täúi æu cuía quy hoaûch âäüng, nghéa laì trong quaï trçnh tçm låìi giaíi khäng âæåüc pheïp nhçn cuûc bäü, tçm täúi æu riãng reî cho tæìng bæåïc maì phaíi nhçn räüng ra nhæîng bæåïc sau, vç trong nhiãöu træåìng håüp mäüt quyãút âënh âem laûi låüi nhuáûn cæûc âaûi riãng reî cho bæåïc naìy coï thãø dáùn âãún háûu quaí tai haûi cho bæåïc sau. Chàóng haûn trong thê duû vãö saïch læåüc quaín lyï caïc xê nghiãûp nãu trãn, nãúu chè nhçn cuûc bäü trong 1 nàm thç âãø âaût låüi nhuáûn täúi âa, ta âáöu tæ toaìn bäü nguäön väún X cho xê nghiãûp naìo maì saín xuáút coï nhiãöu låüi nhuáûn nháút màûc duì sau nàm âoï thiãút bë hæ hoíng nhiãöu gáy thiãût haûi saín xuáút cho nhæîng nàm sau. Theo tinh tháön cuía phæång phaïp quy hoaûch âäüng nãu trãn, ta tháúy åí mäùi bæåïc âãöu phaíi choün quyãút âënh sao cho daîy quyãút âënh coìn laûi phaíi taûo thaình mäüt saïch læåüc täúi æu. Âoï chênh laì nguyãn lyï täúi æu cuía quy hoaûch âäüng, nguyãn lyï doï coìn coï thãø phaït biãøu nhæ sau : “Mäüt bäü pháûn cuía saïch læåüc täúi æu cuîng laì mäüt saïch læåüc täúi æu”. Âiãöu âoï phaín aïnh quan âiãøm hãû thäúng khi xeït täúi æu theo tæìng bæåïc nhæ âaî trçnh baìy. Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 32
- Män hoüc: Váûn haình Hãû thäúng âiãûn Tuy nhiãn coï mäüt bæåïc maì khi laìm täúi æu ta khäng cáön quan tám âãún tæång lai, âoï laì bæåïc cuäúi cuìng (bæåïc thæï n). Vç váûy quaï trçnh quy hoaûch âäüng âæåüc tiãún haình theo trçnh tæû ngæåüc: tæì bæåïc cuäúi cuìng lãn bæåïc âáöu tiãn. Træåïc hãút ta quy hoaûch cho bæåïc cuäúi cuìng. Nhæng khi âoï chæa biãút kãút cuûc cuía bæåïc træåïc âoï, nghéa laì chæa biãút bæåïc ( n - 1) kãút thuïc ra sao, chàóng haûn trong thê duû vãö quaín lyï xê nghiãûp, ta chæa biãút nàm thæï ( n - 1) nguäön väún coìn laûi bao nhiãu, låüi nhuáûn âaî âaût âæåüc laì bao nhiãu Vç váûy caïch laìm cuía quy hoaûch âäüng laì tçm låìi giaíi täúi æu åí bæåïc n æïng våïi nhæîng phæång aïn kãút thuïc khaïc nhau åí bæåïc (n-1). Låìi giaíi âoï âæåüc goüi laì giaï trë täúi æu coï âiãöu kiãûn åí bæåïc n nhàòm âaût cæûc trë haìm muûc tiãu åí bæåïc n (vaì khäng quan tám âãún traûng thaïi cuía hãû sau bæåïc n). Tiãúp tuûc cáön xaïc âënh låìi giaíi täúi æu coï âiãöu kiãûn åí bæåïc (n - 1) æïng våïi moüi phæång aïn kãút thuïc coï thãø cuía bæåïc (n-2) sao cho haìm muûc tiãu âaût cæûc trë trong caí hai bæåïc cuäúi (bæåïc n - 1 vaì n) Tiãúp theo khaío saït nhæ váûy âãún bæåïc âáöu tiãn. Åí mäùi bæåïc ta tçm âæåüc låìi giaíi täúi æu coï âiãöu kiãûn âaím baío cho caí daîy quyãút âënh tiãúp theo âãún bæåïc n laì täúi æu. Thuí tuûc âoï phaín aïnh nguyãn lyï täúi æu âaî trçnh baìy. Sau khi thæûc hiãûn xong trçnh tæû ngæåüc xaïc âënh âæåüc låìi giaíi (quyãút âënh) täúi æu coï âiãöu kiãûn åí mäùi bæåïc, càn cæï vaìo traûng thaïi ban âáöu âaî cho cuía baìi toaïn, ta tiãún haình trçnh tæû thuáûn tæì bæåïc 1 âãún bæåïc n vaì xaïc âënh daîy quyãút âënh täúi æu. Vãö màût toaïn hoüc, nhåì viãûc chuyãøn nghiãn cæïu quaï trçnh n bæåïc vãö tæìng bæåïc, phæång phaïp quy hoaûch âäüng âaî laìm giaím thæï nguyãn cuía baìi toaïn, taûo thuáûn låüi âãø giaíi. Ngoaìi ra nhåì nhæîng thuí tuûc truy chæïng mang tênh cháút chæång trçnh hoïa nãn phæång phaïp quy hoaûch âäüng dãù daìng thæûc hiãûn trãn maïy tênh âiãûn tæí säú. ÅÍ âáy cáön chuï yï ràòng viãûc mä taí n giai âoaûn (trong thåìi gian) cuía quaï trçnh chè laì quy æåïc, cuîng coï thãø quan niãûm hãû gäöm n âäúi tæåüng khaío saït trong mäüt giai âoaûn thåìi gian hoàûc täøng quaït laì hãû gäöm k âäúi tæåüng hoaût âäüng trong n giai âoaûn thåìi gian. 3.2. THAÌNH LÁÛP PHÆÅNG TRÇNH PHIÃÚM HAÌM BELLMAN Xeït baìi toaïn phán phäúi nguäön väún nhæ sau: Giaí thiãút ta âáöu tæ nguäön väún ban âáöu X1 vaìo mäüt xê nghiãûp âãø saín xuáút hai màût haìng A vaì B. Quaï trçnh khaío saït laì n nàm. Vaìo âáöu nàm thæï nháút nguäön väún täøng X1 âæåüc phán laìm hai pháön: x1 âãø saín xuáút màût haìng A vaì (X1 - x1) âãø saín xuáút màût haìng B. Sau nàm âáöu màût haìng A mang laûi cho Xê nghiãûp mäüt låüi nhuáûn theo quan hãû g(x1), màût haìng B mang laûi låüi nhuáûn h (X1 - x1). Âãø saín xuáút caïc màû haìng, nguäön väún âãöu bë hao huût. Giaí thiãút sau nàm âáöu saín xuáút màût haìng A, nguäön väún x1 coìn: x2 = ax1 trong âoï 0 < a < 1 âäúi våïi màût haìng B nguäön väún coìn: (X2 - x2 ) = b(X1 - x1) trong âoï 0 < b < 1 Nguäön väún x2 vaì (X2 - x2 ) tiãúp tuûc âáöu tæ vaìo nàm thæï hai âãø saín xuáút màût haìng A vaì B. Quaï trçnh tiãúp diãùn trong n nàm. Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 33
- Män hoüc: Váûn haình Hãû thäúng âiãûn Giaï trë ban âáöu X1 cuîng nhæ säú nàm n âaî biãút. Do coï sæû khaïc nhau giæîa caïc giaï trë g(xi), h (Xi - xi), a, b nãn xuáút hiãûn yãu cáöu tçm sæû phán phäúi täúi æu nguäön väún Xi trong tæìng nàm sao cho täøng låüi nhuáûn cuía xê nghiãûp sau n nàm laì cæûc âaûi. 3.2.1. Caïch âàût baìi toaïn theo phæång phaïp cäø âiãøn: Baìi toaïn phán phäúi nguäön väún trãn âáy coï thãø phaït biãøu mäüt caïch cäø âiãøn nhæ sau: Cáön xaïc âënh caïc giaï trë x1, x2, xn laì læåüng nguäön väún âáöu tæ âãø saín xuáút màût haìng A åí nàm thæï nháút, thæï hai, thæï n, sao cho täøng låüi nhuáûn cuía xê nghiãûp khi saín xuáút hai màût haìng A vaì B sau n nàm laì cæûc âaûi, nghéa laì: W(x1,x2, xn) = g(x1) + h(X1 - x1) + g(x2) + h (X2 - x2) + + + g(xn) + h (Xn - xn) ⇒ max (3-8) Trong âoï : 0 ≤ xi ≤ Xi i = 1, 2, , n (3-9) Vaì : X1 âaî cho X2 = ax1 + b (X1 - x1) (3-10) Xn = axn + b (Xn-1 - xn-1) Baìi toaïn chuyãøn thaình yãu cáöu xaïc âënh âiãøm cæûc âaûi cuía haìm W(x1, x2, xn) trong khäng gian n chiãöu våïi caïc raìng buäüc daûng (3-9) vaì (3-10). Trong træåìng håüp n nhoí låìi giaíi coï thãø nháûn âæåüc bàòng pheïp tênh vi phán. Tuy nhiãn cáön tháûn troüng vãö mäüt säú træåìng håüp cæûc âaûi coï thãø nàòm åí biãn cuía raìng buäüc, ngoaìi ra khi n låïn, chàóng haûn n ≥ 10, baìi toaïn tråí nãn ráút phæïc taûp. Khäng nhæîng thãú, caïch giaíi baìi toaïn nhæ váûy cho quaï nhiãöu thäng tin khäng cáön thiãút, vç khi âaî biãút X1 vaì n chè cáön xaïc âënh x1 nhæ laì haìm cuía X1 vaì n, nhæ váûy baìi toaïn âæåüc giaíi hoaìn toaìn, vaì suy ra x2, x3 xn. Theo yï âoï ta coï thãø âàût baìi toaïn mäüt caïch måïi, theo tinh tháön quy hoaûch âäüng. 3.2.2. Caïch âàût baìi toaïn theo tinh tháön quy hoaûch âäüng. Âãø âån giaín ta giaí thiãút caïc haìm låüi nhuáûn g(xi) vaì h (Xi - xi) chè phuû thuäüc vaìo læåüng väún âáöu tæ vaìo âáöu nàm thæï i laì xi vaì (Xi - xi), maì khäng thay âäøi theo thåìi gian, nghéa laì daûng haìm g(xi) vaì h (Xi - xi) âäüc láûp våïi thåìi gian. Nhåì saïch læåüc täúi æu phán phäúi nguäön väún, låüi nhuáûn cuía xê nghiãûp sau n nàm saín xuáút màût haìng A vaì B âaût giaï trë cæûc âaûi fn (X1) laì haìm cuía nguäön väún ban âáöu X1 vaì säú nàm n khaío saït. Nãúu quaï trçnh saín xuáút cuía xê nghiãûp chè diãùn ra trong mäüt nàm thç låüi nhuáûn cæûc âaûi f1 (X1) coï daûng : f1 (X1) = max {g (x1) + h (X1 - x1)] (3-11) 0 ≤ x1 ≤ X1 trong âoï f1 (X1) laì giaï trë cæûc âaûi cuía låüi nhuáûn khi säú nàm khaío saït n = 1 vaì säú nguäön väún âàût vaìo nàm âáöu tiãn laì X1. Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 34
- Män hoüc: Váûn haình Hãû thäúng âiãûn Biãøu thæïc (3-11) cho ta caïch xaïc âënh giaï trë f1(X1) nhæ sau: cho x1 nháûn caïc giaï trë khaïc nhau tæì 0 âãún X1, tênh g(x1) vaì h (X1 - x1) sau âoï xaïc âënh f1 (X1). Tæì âáy tháúy ràòng nãúu chè xeït quaï trçnh saín xuáút 1 nàm, nãúu g (x1) > h (X1 - x1) thç toaìn bäü X1 âáöu tæ âãø saín xuáút màût haìng A, màûc duì sau mäüt nàm læåüng X1 âoï seî bë hao huût nhiãöu (giaí thiãút a > b) nhæng âiãöu âoï ta khäng quan tám. Báy giåì khaío saït quaï trçnh chè trong 2 nàm (khäng phaíi hai nàm âáöu cuía quaï trçnh nhiãöu nàm), nghéa laì n = 2. Khi âoï, sau nàm thæï nháút nguäön väún âáöu tæ âãø saín xuáút màût haìng A trong nàm thæï hai laì: x2 = ax1 âäúi våïi màût haìng B coï (X2 - x2) = b (X1 - x1) Theo nguyãn lyï täúi æu cuía quy hoaûch âäüng thç duì cho nàm âáöu phán phäúi X1 thãú naìo, thç säú väún coìn laûi laì X2 = ax1 + b (X1 - x1) cuîng phaíi phán phäúi täúi æu trong nhæîng nàm coìn laûi, åí âáy laì 1 nàm coìn laûi. Vç váûy låüi nhuáûn thu âæåüc åí nàm thæï hai våïi säú väún X2 phaíi âaût cæûc âaûi, bàòng f1(X2) f1(X2) = f1 [ax1 + b (X1 - x1)] (3-12) trong âoï f1(X2) laì låüi nhuáûn cæûc âaûi cuía 1 nàm cuäúi cuía quaï trçnh n = 2 nàm. Tæì âáy coï thãø viãút biãøu thæïc låüi nhuáûn cæûc âaûi cuía xê nghiãûp trong quaï trçnh saín xuáút n = 2 nàm f2(X1) = max {g(x1) + h (X1 - x1) + f1 (X2)} (3-13) 0 ≤ x1 ≤ X1 hoàûc: f2(X1) = max {g(x1) + h (X1 - x1) + max [g(x2) + h (X2 - x2)]} (3-14) 0 ≤ x1 ≤ X1 0 ≤ x2 ≤ X2 trong âoï: x2 = ax1 (X2 - x2 ) = b (X1 - x2) Khaío saït træåìng håüp täøng quaït: Xê nghiãûp cáön xáy dæûng saïch læåüc phán phäúi täúi æu nguäön väún X1 trong quaï trçnh n nàm. Giaí thiãút quaï trçnh chia laìm hai giai âoaûn: nàm âáöu tiãn vaì (n - 1) nàm coìn laûi. Khi âoï låüi nhuáûn täøng cuía xê nghiãûp sau n nàm bàòng täøng hai khoaín låüi nhuáûn: Khoaín låüi nhuáûn nàm âáöu tiãn do nguäön väún X1 gáy nãn: g(x1) + h (X1 - x1) vaì khoaín låüi nhuáûn cuía (n - 1) nàm sau taûo nãn båíi nguäön väún coìn laûi sau nàm thæï nháút laì X2 = ax1 + b (X1 - x1). Theo nguyãn lyï täúi æu cuía quy hoaûch âäüng, duì åí nàm thæï nháút giaï trë x1 âæåüc choün thãú naìo, thç säú väún coìn laûi X2 = ax1 + b (X1 - x1) cuîng cáön phaíi phán phäúi täúi æu suäút trong (n - 1) nàm coìn laûi âãø nháûn âæåüc giaï trë låüi nhuáûn cæûc âaûi fn-1(X2). Vç váûy âãø cho täøng låüi nhuáûn sau n nàm laì cæûc âaûi cáön xaïc âënh x1 sao cho âaût cæûc âaûi phiãúm haìm sau âáy: Wn(x1,X1) = [g(x1) + h (X1 - x1) + fn-1 (X2)] ⇒ max (3-15) Âàût fn(X1) = max Wn(x1, X1) Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 35
- Män hoüc: Váûn haình Hãû thäúng âiãûn Ta coï phæång trçnh phiãúm haìm Bellman, xaïc âënh thuí tuûc phán phäúi täúi æu trong quaï trçnh n bæåïc nhæ sau: fn(X1) = max {g(x1) + h (X1 - x1) + fn-1 [ax1 + b (X1 - x1)]} (3-16) Trong âoï fn(X1) laì giaï trë cæûc âaûi cuía låüi nhuáûn trong n nàm khi nguäön väún täøng âàût vaìo nàm âáöu laì X1. fn-1 [ax1 + b (X1 - x1)] = fn-1(X2) laì giaï trë cæûc âaûi låüi nhuáûn cuía (n - 1) nàm coìn laûi khi nguäön väún täøng âàût vaìo laì X2 (tæì nàm thæï hai). Phæång trçnh phiãúm haìm Bellman daûng (3-16) coï æïng duûng räüng raîi vaì hiãûu læûc trong nhiãöu lénh væûc quy hoaûch caïc hãû thäúng phæïc taûp, âàûc biãût khi säú bæåïc n låïn, thuí tuûc xaïc âënh x1, x2 , xn âæåüc chæång trçnh hoïa vaì thæûc hiãûn trãn maïy tênh âiãûn tæí. Phæång trçnh (3-16) coï tênh cháút truy chæïng vç giaï trë fn(X1) xaïc âënh thäng qua fn-1(X2) trong âoï laûi coï: fn-1(X2) = max {g(x2) + h (X2 - x2) + fn-2 [ax2 + b (X2 - x2)]} (3-17) 0 ≤ x2 ≤ X2 Vaì tiãúp tuûc tênh cho âãún f1(Xn) laì giaï trë cæûc âaûi cuía låüi nhuáûn 1 nàm cuäúi cuìng khi väún âáöu tæ laì Xn. Giaï trë f1(Xn) âæåüc tênh træåïc tiãn. ÅÍ âáy: f1(Xn) = max {g(xn) + h (Xn - xn)} (3-18) 0 ≤ xn ≤ Xn trong âoï: xn = axn-1; (Xn - xn) = b (Xn-1 - xn-1) 3.3. AÏP DUÛNG: Âãø minh hoüa thuí tuûc xaïc âënh saïch læåüc täúi æu theo phæång trçnh phiãúm haìm Bellman ta xeït vê duû âån giaín sau âáy: Vê duû 3-1: Váùn sæí duûng baìi toaïn phán phäúi nguäön väún (thiãút bë) X1 cho xê 2 nghiãûp saín xuáút hai màût haìng. Giaí thiãút haìng nàm màût haìng A cho låüi nhuáûn g(xi) = xi ; 2 i = 1, 2, 3 ; màût haìng B cho låüi nhuáûn h (Xi - xi) - 2 (Xi - xi) ; i = 1, 2, 3. Sau mäùi nàm do hao moìn, nguäön väún xi thaình xi+1 = axi våïi a = 0,75. Nguäön (Xi - xi) thaình (Xi+1 - xi+1) = b (Xi - xi) våïi b = 0,30. Xeït quaï trçnh saín xuáút trong 3 nàm. Cáön xaïc âënh x1 vaì tæì âáúy coï x2, x3, (X1 - x1), (X2 - x2), (X3 - x3) sao cho låüi nhuáûn cuía xê nghiãûp sau 3 nàm âaût cæûc âaûi. Nhæ trãn âaî trçnh baìy, quaï trçnh giaíi âæåüc tiãún haình theo caïc bæåïc sau âáy: a. Bæåïc 1: Bàõt âáöu tæì nàm cuäúi cuìng, åí âáy laì nàm thæï ba. Ta xaïc âënh låìi giaíi täúi æu coï âiãöu kiãûn cuía nàm thæï 3, nghéa laì xaïc âënh giaï trë nguäön väún âáöu tæ x3 cho saín xuáút màût haìng A åí nàm thæï 3 khi giaí thiãút ràòng täøng säú väún coìn laûi sau 2 nàm laì X3 vaì phaíi âaût låüi nhuáûn cæûc âaûi trong nàm thæï ba laì f1(X3). Åí âáy coï: 2 2 f1(X3) = max [x3 + 2 (X3 - x3) ] Vç caïc haìm g (x1) vaì h (Xi - xi) khaí vi nãn coï thãø sæí duûng caïc pheïp tênh vi phán. Cáön xaïc âënh x3 âãø âaût max f1 (X3) Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 36
- Män hoüc: Váûn haình Hãû thäúng âiãûn ∂f (X ) Coï : 1 3 = 2x - 4 (X - x ) = 0 tæì âáy : ∂x 3 3 3 3 f1(X3) 2 x = X 2X 2 3 3 3 3 2 ∂ f1 (X 3 ) vç = 6 > 0 2 2 X 3 ∂x 3 2 X3 nãn giaï trë x3 = X3 æïng våïi cæûc tiãøu cuía haìm f1(X3). 3 1 2 X 3 X 3 3 3 X 3 Nhæ váûy haìm f1(X3) âaût cæûc âaûi åí caïc giaï trë biãn cuía x3 trong khoaíng 0 vaì X3 (xem Hçnh 3-1) Hçnh 3-1 2 Våïi x3 = 0 coï f1(X3) = 2X3 2 Våïi x3 = X3 coï f1(X3) = X3 . Váûy låìi giaíi täúi æu laì x3 = 0, nghéa laì åí nàm thæï ba, hoaìn toaìn khäng âáöu tæ väún âãø saín xuáút màût haìng A maì táút caí väún X3 duìng âãø saín xuáút màût haìng B. Âiãöu âoï dãù hiãøu vç låüi nhuáûn do màût haìng B âem laûi gáúp âäi do A âem laûi. Tuy nhiãn tyí lãû hao moìn väún khi saín xuáút B ráút låïn (70%) nhæng vç laì nàm cuäúi nãn ta khäng quan tám âãún nhæîng nàm tiãúp næîa. b. Bæåïc 2: Ta xaïc âënh låìi giaíi täúi æu coï âiãöu kiãûn åí nàm thæï hai sao cho låüi nhuáûn âaût cæûc âaûi trong caí hai nàm cuäúi (thæï hai vaì thæï ba). Låüi nháûn cæûc âaûi trong hai nàm cuäúi f2(X2) khi nguäön väún âàût vaìo nàm thæï hai laì X2 coï daûng: 2 2 f2(X2) = max [x2 + 2 (X2 - x2) + f1(X3)] 2 Maì åí trãn ta âaî tênh âæåüc f1(X3) = 2X3 Trong âoï : X3 = x3 + (X3 - x3) = ax2 + b (X2 - x2) = 0,75x2 + 0,3 (X2 - x2) Thay giaï rë f1(X3) vaìo haìm f2(X2) ta nháûn âæåüc mäüt âa thæïc báûc 2 cáön tçm cæûc âaûi. Haìm f1(X2) cuîng laì mäüt parabol loîm vaì coï giaï trë cæûc âaûi åí biãn ( hçnh 3-1). Giaíi ra nháûn âæåüc : 2 Våïi x2 = 0 coï f2(X2) = 2,18 X2 2 Våïi x2 = 0 coï f2(X2) = 2,125X2 Nhæ váûy âãø âaím baío saïch læåüc täúi æu cho caí hai nàm cuäúi thç åí nàm thæï hai toaìn bäü nguäön väún X2 cuîng duìng âãø saín xuáút màût haìng B. Khi âoï låüi nhuáûn cæûc âaûi cuía caí hai nàm cuäúi laì: 2 f2(X2) = 2,18X2 khi læåüng väún coìn laûi sau nàm âáöu laì X2 c. Bæåïc 3: Ta xaïc âënh låìi giaíi täúi æu coï âiãöu kiãûn cho nàm âáöu tiãn sao cho âaût cæûc âaûi låüi nhuáûn trong caí ba nàm vaì coï giaï trë f3(X1) æïng våïi nguäön väún âáöu tæ vaìo nàm thæï nháút laì X1: 2 2 f3(X1) = max [x1 + 2 (X1 - x1) + f2(X2)] 0 ≤ x1 ≤ X1 Maì âaî tênh âæåüc : 2 2 f2(X2) = 2,18 X2 = 2,18 [0,75 x1 + 0,3 (X1-x1)] Thay giaï trë f2(X2) vaìo haìm f3(X1) âãø khaío saït cæûc âaûi. Tæång tæû nhæ hai træåìng håüp trãn, haìm f3(X1) laì mäüt parabol loîm, giaï trë cæûc âaûi âaût åí biãn (x1 = 0 vaì x1 = X1) Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 37
- Män hoüc: Váûn haình Hãû thäúng âiãûn 2 Våïi x1 = 0 coï f1(X1) = 2,20 X1 2 Våïi x1 = X1 coï f1(X1) = 2,23 X1 Váûy âãø âaím baío coï saïch læåüc täúi æu phán phäúi nguäön väún trong 3 nàm thç trong nàm thæï nháút phaíi coï x1 = X1, nghéa laì toaìn bäü nguäön väún duìng âãø saín xuáút màût haìng A. Låüi nhuáûn cæûc âaûi sau 3 nàm cuía xê nghiãûp laì : 2 f3(X1) = 2,23X1 Toïm laûi khi cho nguäön väún ban âáöu X1 ta âaî nháûn âæåüc saïch læåüc täúi æu gäöm mäüt daîy quyãút âënh nhæ sau: x1 = X1; x2 = 0; x3 = 0 2 vaì f3(X1) = 2,23X1 Qua thê duû trãn âáy cáön chuï yï máúy âiãøm sau âáy : 1. Trãn âáy chè khaío saït quaï trçnh saín xuáút laì 3 nàm. Khi säú nàm khaío saït laì n (n> 3) maì nhæîng säú liãûu cuía baìi toaïn g(x), h(X1-x1), a, b nhæ cuî thç coï thãø suy ra âæåüc saïch læåüc täúi æu nhæ sau: Hai nàm cuäúi cuìng toaìn bäü väún duìng âãø saín xuáút màût haìng B, coìn tæì nàm âáöu cho âãún nàm thæï (n - 3) toaìn bäü väún duìng âãø saín xuáút màût haìng A. 2. Kãút quaí cuía vê duû trãn âáy laì nhæîng træåìng håüp âàûc biãût, åí mäùi bæåïc toaìn bäü nguäön hoàûc cho âäúi tæåüng A hoàûc cho B. Thæûc tãú thæåìng gàûp træåìng håüp åí mäùi bæåïc caí hai âäúi tæåüng A vaì B âãöu nháûn nguäön väún, âiãöu âoï æïng våïi træåìng håüp haìm fn(X1); fn-1(X2) laì nhæîng âa thæïc âaût cæûc âaûi våïi giaï trë xi trong khoaíng 0 < xi < Xi . 3. Trong vê duû trãn caïc haìm g(xi) vaì f(Xi - xi) âãöu giaíi têch vaì khaí vi nãn sæí duûng âæåüc nhæîng pheïp tênh vi phán. Åí âáy viãûc tçm cæûc trë trong khäng gian 3 chiãöu (x1, x2, x3) nhåì tinh tháön cuía phæång phaïp quy hoaûch âäüng âaî chuyãøn vãö tçm cæûc trë trong khäng gian 1 chiãöu (mäüt thæï nguyãn) trong tæìng bæåïc. 3.4. PHÆÅNG PHAÏP QHÂ KHI HAÌM MUÛC TIÃU COÏ DAÛNG TÄØNG: Trong thæûc tãú, nhiãöu træåìng håüp haìm muûc tiãu âæåüc biãøu diãùn trong daûng âa thæïc, laì täøng cuía nhiãöu thaình pháön. Låüi nhuáûn cuía xê nghiãûp trong n nàm bàòng täøng låüi nhuáûn caïc nàm; chi phê nhiãn liãûu âãø saín xuáút âiãûn nàng cuía toaìn hãû thäúng bàòng täøng chi phê nhiãn liãûu cuía caïc nhaì maïy âiãûn cuìng laìm viãûc trong hãû thäúng .v.v Ta xeït baìi toaïn sau âáy: 3.4.1. Baìi toaïn phán phäúi taìi nguyãn: Coï mäüt loaûi taìi nguyãn ( nhán cäng, tiãön, maïy moïc, nguyãn liãûu ) træî læåüng laì b cáön phán phäúi cho n âån vë saín xuáút j (hoàûc n cäng viãûc) våïi (j = 1 n). Biãút ràòng nãúu phán phäúi cho âån vë thæï j mäüt læåüng taìi nguyãn laì xj thç ta thu âæåüc hiãûu quaí laì Cj(xj). Baìi toaïn âàût ra laì: Haîy tçm caïch phán phäúi læåüng taìi nguyãn b cho n dån vë saín xuáút j sao cho täøng säú hiãûu quaí laì låïn nháút, nghéa laì tçm caïc nghiãûm xj sao cho: n ∑C j (x j ) → max (3 -19) j=1 våïi caïc raìng buäüc Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 38
- Män hoüc: Váûn haình Hãû thäúng âiãûn n ∑ x j ≤ b j=1 x j ≥ 0 j = 1,n (3 - 20) Kê hiãûu baìi toaïn trãn laì baìi toaïn Pn(b). Goüi hiãûu quaí täúi æu cuía baìi toaïn Pn(b) laì fn(b). 3.4.2.Phæång phaïp phæång trçnh truy toaïn: ( Phiãúm haìm Bellman) Âãø giaíi baìi toaïn trãn ta thæûc hiãûn viãûc läöng baìi toaïn Pn(b) vaìo hoü caïc baìi toaïn (quaï trçnh) sau: k ∑C j (x j ) → max k = 1,n (3 - 21) j=1 Våïi caïc raìng buäüc k ∑ x j ≤ α α = 0,b j=1 x j ≥ 0 j = 1,n (3 - 22) Goüi baìi toaïn trãn laì Pk(α). Khi cho k vaì α thay âäøi, baìi toaïn Pk(α) seî thay âäøi taûo thaình hoü caïc baìi toaïn chæïa baìi toaïn ban âáöu khi k = n, α = b nghéa laì âaî chuyãøn quaï trçnh ténh thaình quaï trçnh âäüng (nhiãöu giai âoaûn, hay nhiãöu bæåïc tuìy yï nghéa cuía baìi toaïn). Goüi hiãûu quaí täúi æu cuía baìi toaïn Pk(α) laì fk(α). AÏp duûng nguyãn tàõc täúi æu cuía Qui hoaûch âäüng âãø giaíi baìi toaïn Pk(α) nhæ sau: Giaí sæí phán phäúi cho âån vë thæï k mäüt læåüng taìi nguyãn laì xk vaì nháûn âæåüc hiãûu quaí laì Ck(xk), læåüng taìi nguyãn coìn laûi (α-xk) seî phán phäúi cho (k-1) âån vë coìn laûi nháûn âæåüc hiãûu quaí täúi æu laì fk-1(α-xk), nhæ váûy hiãûu quaí täøng cäüng cuía k âån vë seî laì: Ck(xk) + fk-1(α-xk) (3-23) Nhæ váûy cáön tçm xk sao cho hiãûu quaí täøng cäüng tênh theo cäng thæïc (3-23) laì låïn nháút, nghéa laì hiãûu quaí täúi æu fk(α) âæåüc xaïc âënh nhæ sau: f k (α) = max{Ck (xk) + fk −1(α−xk)} (3 - 24) 0 ≤ xk ≤ α Âáy chênh laì phæång trçnh truy toaïn cuía Qui hoaûch âäüng (coìn goüi laì phæång trçnh phiãúm haìm Bellman). Âaî biãút f1(α) chênh laì C1(α) våïi α thay âäøi, thay giaï trë f1 vaìo (3-6) seî xaïc âënh âæåüc f2(α): Biãút f2(α) seî tênh âæåüc f3(α) cho k vaì α thay âäøi cuäúi cuìng seî tênh âæåüc hiãûu f 2 (α) = max{C2(x2) + f1(α−x2)} (3 - 25) 0 ≤ x2 ≤ α quaí täúi æu fn(b) cuía baìi toaïn Pn(b). Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 39
- Män hoüc: Váûn haình Hãû thäúng âiãûn 3.4.3. AÏp duûng âãø giaíi baìi toaïn thæûc tãú: Vê duû 3-2: Mäüt cäng ty âáöu tæ mua 6 maïy måïiâãø phán bäø cho 3 âån vë saín xuáút. Biãút ràòng nãúu phán phäúi xj maïy cho âån vë thæï j seî mang laûi hiãûu quaí laì Cj(xj) cho trong baíng 3-1. Haîy tçm phæång aïn phán bäø caïc chiãúc maïy sao cho mang laûi hiãûu quaí cao nháút? Baíng 3-1. Tiãön laîi (Triãûu âäöng) C1(x) C2(x) C3(x) Säú maïy âæåüc phán phäúi 0 0 0 0 1 4 2 3 2 6 4 4 3 7 6 4 4 8 7 4 5 8 8 4 6 8 9 4 Diãùn âaût baìi toaïn dæåïi daûng toaïn hoüc nhæ sau: Haîy tçm caïc nghiãûm xj sao cho âaût cæûc âaûi haìm muûc tiãu: 3 ∑C j (x j ) → max j=1 thoía maín caïc raìng buäüc: x1 + x2 + x3 = 6 xj ≥ 0 j = (1,3) Goüi fk(α) laì hiãûu quaí täúi æu ( tiãön laîi låïn nháút ) khi phán phäúi α maïy cho k âån vë saín xuáút. Phæång trçnh phiãúm haìm Bellman nhæ sau: f k (α) = max{Ck (xk) + fk −1(α −xk)} 0 ≤ xk ≤α Ta coï f1(α) = C1(α), thay âäøi k = (1,3) vaì α = (0,6) coï caïc bæåïc tênh toaïn sau: a. Cho k = 1 vaì thay âäøi α = (0,6) f1(0) = 0; f1(1) = 4; f1(2) = 6; f1(3) = 7; f1(4) = 8; f1(5) = 8; f1(6) = 8; b. Cho k = 2 vaì thay âäøi α = (0,6) f2(0) = 0; Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 4 0
- Män hoüc: Váûn haình Hãû thäúng âiãûn f 2 (1) = max{}C2 (x2 ) + f1 (1− x2 ) 0 ≤ x 2 ≤ 1 = max{}C2 (1) + f1 (0);C2 (0) + f1 (1) = max{}(0 + 4);(2 + 0) = 4 f 2 (2) = max{}C2 (x2 ) + f1 (2 − x2 ) 0 ≤ x 2 ≤ 2 = max{}C2 (0) + f1 (2);C2 (1) + f1 (1);C2 (2) + f1 (0) = max{}(0 + 6);(2 + 4);(4 + 0) = 6 f 2 (3) = max{}C2 (x2 ) + f1 (3 − x2 ) 0 ≤ x 2 ≤ 3 = max{}C2 (0) + f1 (3);C2 (1) + f1 (2);C2 (2) + f1 (1);C2 (3) + f1 (0) = max{}(0 + 7);(2 + 6);(4 + 4);(6 + 0) = 8 f 2 (4) = max{}C2 (x2 ) + f1 (4 − x2 ) 0 ≤ x 2 ≤ 4 = max{}C2 (0) + f1 (4);C2 (1) + f1 (3);C2 (2) + f1 (2);C2 (3) + f1 (1);C2 (4) + f1 (0) = max{}(0 + 8);(2 + 7);(4 + 6);(6 + 4);(7 + 0) = 10 f 2 (5) = max{}C2 (x2 ) + f1 (5 − x2 ) 0 ≤ x 2 ≤ 5 ⎧C2 (0) + f1 (5);C2 (1) + f1 (4);C2 (2) + f1 (3);C2 (3) + f1 (2);⎫ = max⎨ ⎬ ⎩C2 (4) + f1 (1);C2 (5) + f1 (0) ⎭ = max{}(0 + 8);(2 + 8);(4 + 7);(6 + 6);(7 + 4);(8 + 0) =12 f 2 (6) = max{}C2 (x2 ) + f1 (6 − x2 ) 0 ≤ x 2 ≤ 6 ⎧C2 (0) + f1 (6);C2 (1) + f1 (5);C2 (2) + f1 (4);C2 (3) + f1 (3);⎫ = max⎨ ⎬ ⎩C2 (4) + f1 (2);C2 (5) + f1 (1);C2 (6) + f1 (0); ⎭ = max{}(0 + 8);(2 + 8);(4 + 8);(6 + 7);(7 + 6);(8 + 4);(9 + 0) =13 c. Cho k = 3: Ta xeït ngay træåìng håüp α = 6 (Vç khäng cáön chuáøn bë säú liãûu âãø tênh f4, våïi k = 4, do chi coï 3 âån vë saín xuáút) f 3 (6) = max{}C3 (x3 ) + f 2 (6 − x3 ) 0 ≤ x 3 ≤ 6 ⎧C3 (0) + f 2 (6);C3 (1) + f 2 (5);C3 (2) + f 2 (4);C3 (3) + f 2 (3);⎫ = max⎨ ⎬ ⎩C3 (4) + f 2 (2);C3 (5) + f 2 (1);C3 (6) + f 2 (0); ⎭ = max{}(0 +13);(3 +12);(4 +10);(4 + 8);(4 + 6);(4 + 4);(4 + 0) =15 Váûy hiãûu quía täúi æu khi âem 6 chiãúc maïy phán phäúi cho 3 âån vë saín xuáút seî laì: f3(6) = C3(1) + f2(5) = C3(1) + C2(3) + f1(2) = C3(1) + C2(3) + C1(2) = 15 triãûu âäöng Phæång aïn phán phäúi täúi æu laì: x1 = 2; x2 = 3; x3 = 1 Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 4 1
- Män hoüc: Váûn haình Hãû thäúng âiãûn 3.5. PHÆÅNG PHAÏP QUY HOAÛCH ÂÄÜNG XAÏC ÂËNH CÅ CÁÚU TÄÚI ÆU CAÏC TÄØ MAÏY LAÌM VIÃÛC Mäüt trong nhæîng baìi toaïn quan troüng cáön giaíi quyãút khi váûn haình vaì thiãút kãú hãû thäúng âiãûn laì æïng våïi mäùi thåìi âiãøm cáön xaïc âënh säú täø maïy laìm viãûc vaì cäng suáút æïng våïi mäùi täø maïy sao cho âaûi cæûc trë mäüt haìm muûc tiãu naìo âoï. Chè tiãu täúi æu åí âáy coï thãø laì chi phê tênh toaïn vãö saín xuáút âiãûn nàng laì nhoí nháút, laì täøng âiãûn nàng saín xuáút ra laì cæûc âaûi, âäü tin cáûy cung cáúp âiãûn cuía toaìn hãû thäúng âaût cæûc âaûi .v.v Âãø âån giaín chè tiãu täúi æu thæåìng xeït theo cæûc tiãøu læåüng nhiãn liãûu tiãu hao trong toaìn hãû thäúng. Xeït phán phäúi täúi æu cäng suáút giæîa caïc nhaì maïy trong hãû thäúng theo haìm muûc tiãu laì täøng chi phê nhiãn liãûu trong toaìn hãû thäúng laì beï nháút. Khi âoï giaí thiãút ràòng åí mäùi thåìi âiãøm säú täø maïy n vaì phuû taíi täøng Pn âaî biãút, cáön xaïc âënh Pi ; i = 1, 2 n sao cho chi phê nhiãn liãûu B∑ ⇒ min. Trong muûc naìy seî sæí duûng phæång phaïp quy hoaûch âäüng xeït baìi toaïn xaïc âënh säú täø maïy täúi æu cáön thiãút laìm viec åí tæìng thåìi âiãøm (giai âoaûn) âäöng thåìi xaïc âënh læåüng cäng suáút täúi æu phán phäúi giæîa chuïng. Nhæ váûy åí âáy tæång âæång våïi baìi toaïn xaïc âënh saïch læåüc täúi æu phán phäúi nguäön väún täøng Pft cho n âäúi tæåüng P1, P2 Pn trong caí thåìi kyì nhiãöu bæåïc t = 1, 2 , T sao cho âaût cæûc tiãøu vãö chi phê nhiãn liãûu täøng B∑. Træåïc hãút âãø âån giaín, ta giaí thiãút laì säú læåüng täø maïy laìm viãûc chè phuû thuäüc vaìo chè tiãu læåüng nhiãn liãûu tiãu hao maì chæa xeït âãún aính hæåíng cuía viãûc ngæìng hoàûc måí laûi täø maïy, nghéa laì åí âáy chæa xeït âãún täøn hao nhiãu liãûu khi måí maïy. Våïi giaí thiãút âoï thç quaï trçnh coï thãø xeït âäüc láûp åí mäùi thåìi âiãøm. Âiãöu naìy âuïng âäúi våïi caïc nhaì maïy nhiãût âiãûn vç giaí thiãút ràòng læåüng nguäön nhiãn liãûu khäng bë haûn chãú. Âäúi våïi thuíy âiãûn cáön tháûn troüng hån, vç quyãút âënh læåüng cäng suáút åí bæåïc naìy coï aính hæåíng nhiãöu âãún quyãút âënh cuaí bæåïc sau vç phaíi âaím baío læåüng næåïc tiãu hao khäng âäøi cho caí chu kyì âiãöu tiãút. Nhæ váûy træåïc hãút ta xeït cå cáúu täúi æu caïc täø maïy nhiãût âiãûn laìm viãûc åí mäùi thåìi âiãøm vaì phán phäúi täúi æu cäng suáút giæîa chuïng, nghéa laì baìi toaïn âæåüc phaït biãøu nhæ sau: Giaí thiãút hãû thäúng gäöm n täø maïy nhiãût âiãûn. Æïng våïi mäùi thåìi âiãøm t trong giai âoaûn T, cáön xaïc âënh caïc giaï trë cäng suáút phaït cuía caïc täø maïy. Sao cho : n B∑ = ∑ Bi(Pi ) ⇒ min (3-26) i =1 vaì thoîa maîn raìng buäüc : n ∑ Pi = Pft (3-27) i =1 Pimin ≤ Pi ≤ Pimax (3-28) Trong âoï Bi (Pi) laì quan hãû giæîa chi phê nhiãn liãûu cuía täø maïy i khi phaït cäng suáút Pi , Pft laì yãu cáöu vãö cäng suáút täøng cuía hãû thäúng coï kãø âãún täøn hao trong maûng âiãûn. ÅÍ âáy Pft chênh laì læåüng nguäön väún täøng cáön phán phäúi cho n âäúi tæåüng. Låìi giaíi [Pi] ; i = 1, 2, ,n thoía maîn caïc âiãöu kiãûn trãn seî cho ta biãút vãö cå cáúu täúi æu caïc täø maïy, æïng våïi Pk = 0 chæïng toí åí thåìi âiãøm âoï khäng nãn cho täø maïy k laìm viãûc. Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 4 2
- Män hoüc: Váûn haình Hãû thäúng âiãûn Sau âáy trçnh baìy thuáût toaïn giaíi dæûa trãn phæång trçnh phiãúm haìm Bellman. 3.5.1. Thuáûn toaïn dæûa trãn phæång trçnh phiãún haìm Bellman ÅÍ âáy ta sæí duûng phæång phaïp quy hoaûch âäüng trong saïch læåüc phán phäúi täúi æu (nguäön väún) cäng suáút Pft cho n âäúi tæåüng. Giaí thiãút âäúi tæåüng thæï n âaî nháûn cäng suáút Pn, theo nguyãn lyï täúi æu cuía quy hoaûch âäüng, duì Pn laì bao nhiãöu, thç säú nguäön coìn laûi (Pft - Pn) cuîng phaíi phán phäúi mäüt caïch täúi æu cho ( n - 1) âäúi tæåüng coìn laûi. Khi âoï chi phê nhiãn liãûu trong toaìn hãû thäúng laì: B (P1, , Pn) = Bn (Pn) + fn-1(Pft - Pn) (3-29) Trong âoï Bn(Pn) laì chi phê nhiãn liãûu cuía täø maïy thæï n khi cäng suáút phaït ra laì Pn fn-1(Pft - Pn) laì chi phê nhiãn liãûu cæûc tiãøu khi phán phäúi læåüng cäng suáút (Pft - Pn) cho (n - 1) täø maïy coìn laûi. Viãûc choün täø maïy naìo laì thæï n khäng aính hæåíng âãún kãút quaí tênh toaïn B (P1, , Pn). Tæì âáy ta coï phæång trçnh phiãúm haìm Bellman trong træåìng håüp naìy nhæ sau: fn(Pft) = min {Bn(Pn) + fn-1(Pf1 - Pn)} (3-30) 0 ≤ Pn ≤ Pft Trong âoï fn(Pft) laì chi phê nhiãn liãûu cæûc tiãøu khi phán læåüng cäng suáút täøng Pft cho n täø maïy nhiãût âiãûn. Biãøu thæïc (3-30) coï daûng truy chæïng nhæ âaî biãút, vaì viãûc giaíi cuîng seî âæåüc tiãún haình theo hai quaï trçnh: Quaï trçnh ngæåüc nhàòm xaïc âënh låìi giaíi täúi æu coï âiãöu kiãûn, nghéa laì xaïc âënh cå cáúu täø maïy täúi æu våïi nhæîng giaï trë nguäön khaïc nhau khi bàõt âáöu tæì bæåïc cuäúi cuìng, åí âáy laì mäüt täø maïy. Sau âoï xaïc âënh täúi æu coï âiãöu kiãûn cuía hai bæåïc cuäúi cuìng, åí âáy laì hai täø maïy .v.v cho âãún n täø maïy. Nhæ váûy quaï trçnh ngæåüc laì chuáøn bë âáöy âuí thäng tin vãö låìi giaíi täúi æu phuûc vuû cho quaï trçnh thuáûn tiãúp theo. Trong quaï trçnh thuáûn, càn cæï vaìo Pft âaî cho, dæûa vaìo nhæîng kãút quaí chuáøn bë åí quaï trçnh ngæåüc, xaïc âënh âæåüc cå cáúu täúi æu caïc täø maïy laìm viãûc vaì phán phäúi täúi æu cäng suáút giæîa chuïng. Sau âáy trçnh baìy thuáût toaïn cuía quaï trçnh ngæåüc vaì thuáûn âãø giaíi baìi toaïn âaî nãu. Quaï trçnh ngæåüc bao gäöm caïc bæåïc sau âáy : 1. Tçm låìi giaíi täúi æu coï âiãöu kiãûn âäúi våïi tæìng täø maïy, nghéa laì xaïc âënh Bi(Pi); i= 1, 2, , n, trong âoï Pi nháûn caïc giaï trë tæì Pi = 0 âãún Pimax. Trong træåìng håüp âàûc tênh tiãu hao nhiãn liãûu Bi(Pi) cho i trong daûng baíng säú, ta coï thãø sæí duûng træûc tiãúp. Kãút quaí tênh åí bæåïc naìy âæåüc ghi vaìo bäü nhåï, chênh laì caïc giaï trë f1(Pi) = Bi(Pi) 2. Âäúi våïi træåìng håüp hai täø maïy, ta aïp duûng phæång trçnh phiãúm haìm Bellman, cáön xaïc âënh: f2(Pft) = min {B2(P2) + f1(Pft - P2)} (3-31) P2min ≤ P2 ≤ P2max Trong âoï f2(Pft) laì chi phê nhiãn liãûu cæûc tiãøu khi phán phäúi phuû taíi Pft cho hai täø maïy; f1(Pft - P2) laì chi phê nhiãn liãûu cæûc tiãøu cuía täø maïy mäüt khi coï læåüng phuû taíi chung laì Pft vaì täø maïy thæï hai nháûn P2. Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 4 3
- Män hoüc: Váûn haình Hãû thäúng âiãûn ÆÏng våïi bæåïc naìy, âãø xaïc âënh låìi giaíi täúi æu coï âiãöu kiãûn ta cáön thæûc hiãûn hai chu trçnh. * Chu trçnh trong: Cho giaï trë Pft laì cæûc tiãøu : Pftmin vaì thay âäøi giaï trë P2 tæì 0 âãún P2max (hoàûc tæì P2min). Våïi mäùi giaï trë P2 ta tênh chi phê nhiãn liãûu cho hai täø maïy, sau âoï so saïnh láúy giaï trë min, theo biãøu thæïc (3-31). Nhæ váûy æïng våïi mäüt giaï trë phuû taíi Pftmin trong træåìng håüp 2 täø maïy, ta ghi âæåüc trë säú täúi æu P2 (Pftmin) laì cäng suáút cáön phaït cuía täø maïy 2. Táút nhiãn P1 = Pftmin - P2. Ngoaìi ra cuîng ghi âæåüc giaï trë chi phê nhiãn liãûu cæûc tiãøu khi phán phäúi Pftmin cho hai täø maïy. * Chu trçnh giæîa: Báy giåì cho giaï trë Pft tàng dáön, tæì Pft = Pf1min = ∆P âãún Pf1=2∆P , trong âoï ∆P laì báûc cäng suáút chung trong hãû thäúng (thæåìng càn cæï theo baíng säú liãûu âaî cho). Æïng våïi mäùi giaï trë Pft ta laûi thay âäøi giaï trë P2 nhæ trçnh baìy åí chu trçnh trong vaì xaïc âënh âæåüc P2 (Pftmin + K∆P) vaì f2( Pftmin + K∆P); K = 1,2, Tàng dáön giaï trë Pft âãún Pftmax = P1max + P2max Toïm laûi åí cuäúi bæåïc hai naìy, âäúi våïi hai täø maïy ta ghi âæåüc mäüt daîy kãút quaí vãö phán phäúi täúi æu caïc phuû taíi Pftmin; (Pftmin + K∆P); ; (P1max + P2max) cho hai täø maïy. Nhæîng kãút quaí âoï laì : P2 (Pftmin + K∆P) vaì f2 (Pf1min + K∆P); K = 1,2, Nhæîng säú liãûu naìy chuáøn bë cho quaï trçnh thuáûn sau naìy. 3. Trãn âáy laì cäng viãûc chuáøn bë cho hai täø maïy. Báy giåì âãø tiãúp tuûc tênh cho 3 täø maïy ta thæûc hiãûn nhæ sau: * Chu trçnh ngoaìi: Cho säú täø maïy tàng âãún 3. ÆÏng våïi säú täø maïy nháút âënh (n = 3) quaï trçnh tênh toaïn làûp laûi hai chu trçnh trong vaì giæîa, nghéa laì laûi thay âäøi giaï trë P3 (våïi Pft cäú âënh) sau âoï laûi thay âäøi Pft . Nhæ váûy æïng våïi 3 täø maïy, cuîng xaïc âënh âæåüc giaï trë cäng suáút täúi æu cuía täø maïy thæï ba P3(Pft + K∆P) vaì giaï trë cæûc tiãøu cuía chi phê nhiãn liãûu cho ba täø maïy f3(Pft+K∆P) khi phuû taíi thay âäøi (Pft + K∆P) , K = 0,1, 2 Nhæîng kãút quaí naìy âãöu âæåüc ghi vaìo bäü nhåï maïy tênh. 4. Xeït tiãúp cho 4, 5, , n täø maïy Âãún âáy kãút thuïc quaï trçnh ngæåüc vaì cäng viãûc chuáøn bë âaî xong, nghéa laì âaî coï caïc bäü säú liãûu sau: Bi(Pi); i = 1, 2, , n f2(Pft); P2(Pft) f3(Pft); P3(Pft) fn(Pft); Pn(Pft) Trong âoï Pft âæåüc nháûn caïc giaï trë khaïc nhau, tæì Pftmin âãún Pftmax æïng våïi mäùi bæåïc (1, 2, , n täø maïy) Quaï trçnh chuáøn bë gäöm ba chu trçnh: trong, giæîa vaì ngoaìi trãn âáy coï thãø mä taí så læåüc nhåì giaín âäö khäúi nhæ sau (hçnh 3-2). Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 4 4
- Män hoüc: Váûn haình Hãû thäúng âiãûn Nháûp säú liãûu k := k + 1 P := P + ∆P ft ft P := P + ∆P k k Tênh f (P ) = B (P ) + f (P -P) k ft k k k-1 ft k S Pk = Pkmax  Choün Fk = Min {fk(Pft)} S Pft = Pftmax  S k = n  IN KÃÚT QUAÍ DÆÌNG MAÏY Hçnh 3-2 Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 4 5
- Män hoüc: Váûn haình Hãû thäúng âiãûn Tiãúp theo trong quaï trçnh thuáûn, càn cæï vaìo phuû taíi täøng âaî cho åí thåìi âiãøm âang ()n xeït Pft vaì säú læåüng täø maïy n coï khaí nàng tham gia, ta seî xaïc âënh âæåüc säú täø maïy coï giaï trë Pi ≥ 0; Biãút Pft vaì säú n dæûa vaìo säú liãûu åí quaï trçnh ngæåüc, tæì bäü nhåï ruït ra âæåüc Pn vaì fn(Pft), nghéa laì xaïc âënh âæåüc giaï trë cäng suáút täúi æu cuía täø maïy thæï n vaì chi phê nhiãn liãûu cæûc tiãøu cho n täø maïy. Nãúu tçm ra Pn = 0, coï nghéa laì täø maïy thæï n khäng laìm viãûc. Tiãúp theo xaïc âënh phuû taíi æïng våïi (n - 1) täø maïy coìn laûi : (n −1) ()n Pft = Pft - Pn ()n −1 (n −1) æïng våïi læåüng phuû taíi Pft naìy, våïi (n - 1) täø maïy ta tra âæåüc giaï trë Pn-1 vaì fn-1( Pft ). Tiãúp tuûc laìm nhæ váûy cho âãún khi coìn mäüt täø maïy (täø maïy thæï nháút) vaì xaïc âënh âæåüc Pn, Pn-1, , P2, P1 thoía maîn Bn(Pn) + Bn-1(Pn-1) + + B2(P2) + B1(P1) ⇒ min n ()n ∑ Pi = Pft i =1 Trãn âáy âaî trçnh baìy thuí tuûc xaïc âënh cå cáúu täúi æu caïc täø maïy laìm viãûc vaì phán phäúi täúi æu cäng suáút giæîa chuïng, æïng våïi giaï trë phuû taíi täøng Pft åí mäüt thåìi âiãøm nháút âënh. Khi phuû taíi täøng thay âäøi åí nhæîng thåìi âiãøm khaïc nhau quaï trçnh tênh toaïn làûp laûi tæång tæû. 3.5.2. Âàûc âiãøm khi xuáút hiãûn thuíy âiãûn trong hãû thäúng Giaí thiãút trong hãû thäúng coï nhæîng täø maïy thuíy âiãûn coï thãø âiãöu chènh cäng suáút phaït PTÂi theo chu kyì âiãöu tiãút cuía häö chæïa næåïc. Baìi toaïn xaïc âënh cå cáúu vaì phán phäúi täúi æu cäng suáút giæîa caïc täø maïy nhiãût vaì thuíy âiãûn trong træåìng håüp naìy phaíi thoía maîn nhæîng raìng buäüc sau âáy : - Chi phê nhiãn liãûu cuía toaìn hãû thäúng trong caí chu kyì khaío saït laì cæûc tiãøu (B∑⇒min). - Læåüng næåïc tiãu thuû båíi mäùi nhaì maïy thuíy âiãûn trong chu kyì âiãöu tiãút khäng væåüt giaï trë cho pheïp Qcf. - Thoía maîn vãö cán bàòng cäng suáút trong toaìn hãû thäúng taûi mäùi thåìi âiãøm cuía chu kyì khaío saït. Âãø giaíi baìi toaïn naìy ta váùn sæí duûng thuáût toaïn cuía quy hoaûch âäüng, nhæng cáön læu yï nhæîng âiãøm sau âáy. Âäúi våïi caïc täø maïy nhiãût âiãûn váùn sæí duûng nhæîng quan hãû chi phê nhiãn liãûu Bi(Pi), trong daûng giaíi têch hoàûc baíng säú thäúng kã. Nhæng âäúi våïi täø maïy thuíy âiãûn phaíi chuyãøn thaình täø maïy nhiãût âiãûn quy âäøi, khi âoï ta nhán toaìn bäü giaï trë læu læåüng næåïc Qk våïi hãû säú hiãûu quaí nàng læåüng λ trong quan hãû Qk = f (PTÂk) cuía täø maïy thuíy âiãûn k. Sau âoï cuîng tiãún haình quaï trçnh chuáøn bë âãø xaïc âënh låìi giaíi täúi æu coï âiãöu kiãûn æïng våïi caïc giaï trë phuû taíi täøng Pft khaïc nhau. Trong quaï trçnh thuáûn sau khi xaïc âënh âæåüc giaï trë Pi; i = 1, 2, n åí nhæîng thåìi âiãøm khaïc nhau trong chu kyì âiãöu tiãút, nghéa laì xaïc âënh âæåüc âäö thë phuû taíi cuía caïc täø maïy. Nhæîng giaï trë naìy laì kãút quaí æïng våïi mäüt giaï trë λ âaî choün. Vç váûy phaíi kiãøm tra Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 4 6
- Män hoüc: Váûn haình Hãû thäúng âiãûn âiãöu kiãûn raìng buäüc vãö læu læåüng næåïc cho pheïp trong chu kyì âiãöu tiãút cuía thuíy âiãûn. Nãúu khäng thoía maîn raìng buäüc, nghéa laì giaï trë læu læåüng tênh toaïn Qit ≠ Qcf thç phaíi choün laûi giaï trë λ vaì tênh laûi caïc quaï trçnh ngæåüc vaì thuáûn åí trãn . Toïm laûi låìi giaíi täúi æu cuía baìi toaïn xaïc âënh cå cáúu täø maïy vaì phán phäúi cäng suáút giæîa chuïng trong træåìng håüp coï nhiãût âiãûn vaì thuíy âiãûn laì sæû kãút håüp phæång phaïp choün dáön hãû säú λ cuía thuíy âiãûn våïi thuáût toaïn cuía quy hoaûch âäüng. * Chuï yï : Trong træåìng håüp hãû thäúng gäöm toaìn caïc täø maïy thuíy âiãûn, thuáût toaïn giaíi theo phæång phaïp quy hoaûch âäüng hoaìn toaìn nhæ âäúi våïi hãû gäöm toaìn nhiãût âiãûn, khi âoï haìm muûc tiãu laì cæûc tiãøu læåüng tiãu hao næåïc. 3.5.3. AÏp duûng âãø giaíi baìi toaïn thæûc tãú: Vê duû 3-3: Xaïc âënh cå cáúu täúi æu caïc täø maïy laìm viãûc vaì phán bäú cäng suáút täúi æu giæîa chuïng trong nhaì maïy nhiãût âiãûn gäöm 3 täø maïy coï âàûc tênh tiãu hao nhiãn liãûu cho trong baíng 3-2. Baíng 3-2 . Pft [MW] 0 2 4 6 8 10 12 B1 [táún/h] 2 3 3,5 4 5 6 8 B2 [táún/h] 1 2 2,5 4,5 5,5 7 9 B3 [táún/h] 3 3 3 4 5,2 6,7 10 Ta bàõt âáöu bàòng quaï trçnh ngæåüc nhàòm chuáøn bë caïc låìi giaíi täúi æu coï âiãöu kiãûn våïi säú täø maïy khaïc nhau vaì phuû taíi täøng Pft khaïc nhau âãø sæí duûng trong quaï trçnh thuáûn tçm låìi giaíi cuía baìi toaïn phán bäú täúi æu. Træåìng håüp nhaì maïy chè coï mäüt täø maïy, ta coï chi phê nhiãn liãûu cæûc tiãøu chênh laì giaï trë Bi(Pi) våïi i=(1,3) nhæ trong baíng 3-2. Træåìng håüp coï 2 täø maïy, cáön xaïc âënh chi phê nhiãn liãûu cæûc tiãøu khi 2 täø maïy nháûn phuû taíi chung laì Pft. Ta thay âäøi giaï trë cuía Pft tæì P1min (hoàûc P2min) âãún (P1max+P2max) theo báûc cäng suáút cho trong baíng 3-2 vaì æïng våïi mäùi giaï trë cuía Pft täøng ta thay âäøi caïc giaï trë cuía P1, P2 âãø choün giaï trë min cuía chi phê nhiãn liãûu täøng theo phæång trçnh phiãúm haìm Bellman. f2(Pft) = Min { B2(P2) + f1 (Pft - P2)} = Min {B2(P2) + B1(Pft-P2)} 0 ≤ P2 ≤ 12 Chàóng haûn: Khi Pft = 0, cho P1= 0, P2= 0; Ta coï f2(0) = Min {B2(0) + B1(0)} = 2+1 = 3 Khi Pft = 2: f2(2)=Min{B2(0) + B1(2); B2(2) + B1(0)}= Min{1+3; 2+2}=4 Khi Pft = 4: f2(4)=Min{B2(0)+B1(4); B2(2)+B1(2); B2(4)+B1(0)}= Min{1+3,5; 3+2; 2,5+2}= 4,5. Cæï thãú tiãúp tuûc cho âãún Pft = 24 MW Âãø tiãûn låüi cho qua ttrçnh thuáûn ta duìng baíng 3-3 âãø tênh toaïn ghi laûi caïc kãút quaí. ÆÏng våïi mäùi giaï trë phuû taíi bàòng täøng cäng suáút phaït cuía 2 täø maïy (Pft=P1+P2), ta coï caïc giaï trë chi phê nhiãn liãûu cuía caí 2 täø maïy ghi theo caïc ä trãn âæåìng cheïo coï Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 4 7
- Män hoüc: Váûn haình Hãû thäúng âiãûn Pft=P1+P2, tæì caïc giaï ttrë trãn âæåìng cheïo naìy ta choün giaï trë min, âoï chênh laì giaï trë f2(Pft) khi Pft=P1+P2, trong âoï P1 vaì P2 laì cäng suáút phaït täúi æu cuía 2 täø maïy1 vaì 2. Trong baíng 3-2 caïc giaï trë f2(Pft) naìy âæåüc khoanh troìn. ÅÍ quaï trçnh thuáûn, giaí sæí nhaì maïy coï 2 täø maïy 1 vaì 2 laìm viãûc vaì Pft = 10MW, dæûa vaìo baíng 3-2 trãn âæåìng cheïo Pft = 10MW ta coï f2(10) = 6,5 táún/h vaì cå cáúu täúi æu phaït cäng suáút cuía caïc täø may laì: P1(10) = 6MW; P2(10) = 4MW. Tæång tæû: f2(16) = 10,5 táún/h P1(16) = 10MW P2(16) = 6MW f2(20) = 13,0 táún/h P1(20) = 10MW P2(20) = 10MW Baíng 3-3 . Pft 0 2 4 6 8 P1 0 2 4 6 8 10 12 10 P2 B2\B1 2 3 3.5 4 5 6 8 12 0 1 3 4 4.5 5 6 7 9 14 2 2 4 5 5.5 6 7 8 10 16 4 2.5 4.5 5.5 6 6.5 7.5 8.5 10.5 18 6 4.5 6.5 7.5 8 8.5 9.5 10.5 12.5 20 8 5.5 7.5 8.5 9 9.5 10.5 11.5 13.5 22 10 7 9 10 11 11 12 13 15 24 12 9 11 12 13 13 14 15 17 Tiãúp theo cáön tênh toaïn cho træåìng håüp nhaì maïy coï 3 täø maïy laìm viãûc: f3(Pft) = Min { B3(P3) + f2 (Pft - P3)} 0 ≤ P3 ≤ 12 Trong âoï B3(P3) láúy tæì baíng 3-2 vaì f2(Pft-P3) láúy tæì baíng 3-3. Kãút quaí tênh toaïn nhæ trãn baíng 3-4. Baíng 3-4 . Pft 0 2 4 6 8 10 12 14 16 18 20 P12 0 2 4 6 8 10 12 14 16 18 20 22 24 22 P3 B3\f2 3 4 4.5 5 6 6.5 7.5 8.5 10.5 11.5 13 15 17 24 0 3 6 7 7.5 8 9 9.5 10.511.5 13.5 14.5 16 18 20 26 2 3 6 7 7.5 8 9 9.5 10.511.5 13.5 14.5 16 18 20 28 4 3 6 7 7.5 8 9 9.5 10.5 11.5 13.5 14.5 22 18 20 30 6 4 7 8 8.5 9 10 10.5 11.5 12.5 14.5 15.5 17 19 21 32 8 5.2 8.2 9.2 9.7 10.2 11.2 11.7 12.7 13.7 15.7 16.7 18.2 20.2 22.2 34 10 6.7 9.7 10.7 11.2 11.7 12.7 13.2 14.2 15.2 17.2 18.2 19.7 21.7 23.7 36 12 10 13 14 14.5 15 16 16.5 17.5 18.5 20.5 21.5 23 25 27 Dæûa vaìo baíng 3-4 vaì baíng 3-3 coï thãø xaïc âënh âæåüc cå cáúu phán bäú täúi æu cäng suáút giæîa caïc täø maïy vaì chi phi nhiãn liãûu cæûc tiãøu khi biãút phuû taíi täøng Pft. a. Xeït træåìng håüp phuû taíi täøng Pft = 20MW - Tæì baíng 3-4 theo âæåìng cheïo æïng våïi Pft = 20MW ta tra âæåüc f3(20) = 12,5táún/h vaì tæång æïng P3(20) = 6MW, P1-2(20) = 14MW. - Tæì baíng 3-3 theo âæåìng cheïo æïng våïi Pft = 14MW ta tra âæåüc f2(14) = 8,5 táún/h vaì tæång æïng coï âæåüc P1(14) = 10MW, P2(14) = 4MW. Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 4 8
- Män hoüc: Váûn haình Hãû thäúng âiãûn - Nhæ váûy, khi Pft = 20MW ta coï cå cáúu phán bäú täúi æu cäng suáút cho caïc täø may nhæ sau: P1 = 10MW, P2 = 4MW , P3 = 6MW vaì chi phê nhiãn liãûu cæûc tiãøu laì 12,5 táún/h. - Phæång aïn phán bäú täúi æn trãn laì duy nháút. b. Xeït træåìng håüp phuû taíi täøng Pft = 18MW - Tæì baíng 3-4 theo âæåìng cheïo æïng våïi Pft = 18MW ta tra âæåüc f3(18) = 11,5táún/h vaì tæång æïng P3(18) = 4MW, P1-2(18) = 14MW, hoàûc P3(18) = 6MW , P1-2(18) = 12MW. - Tæì baíng 3-3 theo âæåìng cheïo æïng våïi Pft = 14MW ta tra âæåüc f2(14) = 8,5 táún/h vaì tæång æïng coï âæåüc P1(14) = 10MW, P2(14) = 4MW. Hoàûc theo âæåìng cheïo æïng våïi træåìng håüp Pft = 12MW ta tra âæåüc f2(12) = 7,5 táún/h vaì tæång æïng coï âæåüc P1(12)=8MW, P2(12) = 4MW. - Nhæ váûy, khi Pft = 18MW ta coï 2 phæång aïn phán bäú täúi æu cäng suáút cho caïc täø maïy nhæ sau: P1 = 10MW, P2 = 4MW , P3 = 4MW hoàûc P1 = 8MW, P2 = 4MW , P3=6MW vaì chi phê nhiãn liãûu cæûc tiãøu laì 11,5 táún/h. - Phæång aïn phán bäú täúi æn trãn laì khäng duy nháút. Âãø thuáûn tiãn cho viãûc sæí duûng trong quaï trçnh váûn haình, chuïng ta coï thãø tênh toaïn træåïc caïc phæång aïn phán bäú täúi æu cäng suáút tæåïng våïi phuû taíi täøng âaî biãút nhæ trãn baíng3-5 . Baíng 3-5 . 0 2 4 6 8 10 12 14 16 18 Pft 6 6 6 7 7,5 8 9 9,5 10,5 11,5 f3(t/h) 0 0 0 0 4 6 8 6 8 10 P1(MW) 0 0 0 0 0 0 0 4 4 4 P2(MW) 0 2 4 6 4 4 4 4 4 4 P3(MW) 20 22 24 26 28 30 32 34 36 Pft 12,5 13,7 15,2 16,7 18,2 19,7 21,7 23,7 27 f3(t/h) 10 10 10 10 10 10 10 12 12 P1(MW) 4 4 4 8 10 10 12 12 12 P2(MW) 6 8 10 8 8 10 10 10 12 P3(MW) Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 4 9
- Män hoüc: Váûn haình Hãû thäúng âiãûn Chæång 4 NHÆÎNG KHAÏI NIÃÛM CÅ BAÍN VÃÖ ÂÄÜ TIN CÁÛY 4.1 MÅÍ ÂÁÖU Âäü tin cáûy laì chè tiãu then chäút trong sæû phaït triãøn kyî thuáût, âàûc biãût laì khi xuáút hiãûn nhæîng hãû thäúng phæïc taûp nhàòm hoìan thaình nhæîng chæïc nàng quan troüng trong caïc laînh væûc cäng nghiãûp khaïc nhau. Âäü tin cáûy cuía pháön tæí hoàûc cuía caí hã ûthäúng âæåüc âaïnh giaï mäüt caïch âënh læåüng dæûa trãn hai yãúu täú cå baín laì: tênh laìm viãûc an toìan vaì tênh sæîa chæîa âæåüc. Hãû thäúng laì táûp håüp nhæîng pháön tæí (PT) tæång taïc trong mäüt cáúu truïc nháút âënh nhàòm thæûc hiãûn mäüt nhiãûm vuû xaïc âënh, coï sæû âiãöu khiãøn thäúng nháút sæû hoaût âängü cuîng nhæ sæû phaït triãøn. Vê duû: Trong HTÂ caïc pháön tæí laì maïy phaït âiãûn, MBA, âæåìng dáy nhiãûm vuû cuíá HTÂ laì saín xuáút vaì truyãön taíi phán phäúi âiãûn nàng âãún caïc häü tiãûu thuû. Âiãûn nàng phaíi âaím baío caïc chè tiãu cháút læåüng phaïp âënh nhæ âiãûn aïp, táön säú, vaì âäü tin cáûy håüp lyï (ÂTC khäng phaíi laì mäüt chè tiãu phaïp âënh, nhæng xu thãú phaíi tråï thaình mäüt chè tiãu phaïp âënh våê mæïc âäü håüp lyï naìo âoï ). HTÂ phaíi âæåüc phaït triãøn mäüt caïch täúi æu vaì váûn haình våïi hiãûu quaí kinh tãú cao nháút. Vãö màût âäü tin cáûy HTÂ laì mäüt hãû thäúng phæïc taûp thãø hiãûn åí cacï âiãøm: - Säú læåüng caïc pháön tæí ráút låïn. - Cáúu truïc phæïc taûp. - Räüng låïn trong khäng gian. -Phaït triãøn khäng ngæìng theo thåìi gian. -Hoaût âäüng phæïc taûp. Vç váûy HTÂ thæåìng âæåüc quaín lyï phán cáúp, âãø coï thãø quaín lyï, âiãöu khiãøn sæû phaït triãøn, cuîng nhæ váûn haình mäüt caïch hiãûu quaí. HTÂ laì hãû thäúng phuûc häöi, caïc pháön tæí cuía noï coï thãø bë hoíng sau âoï âæåüc phuûc häöi vaì laûi âæa vaìo hoaût âäüng. Pháön tæí laì mäüt bäü pháûn taûo thaình hãû thäúng maì trong quaí trçnh nghiãn cæïu âäü tin cáûy nháút âënh, noï âæåüc xem nhæ laì mäüt täøng thã ø khäng chia càõt âæåüc ( vê duû nhæ linh kiãûn, thiãút bë ) maì âäü tin cáûy âaî cho træåïc, hoàûc xaïc âënh dæûa trãn nhæîng säú liãûu thäúng kã. Pháön tæí åí âáy coï thãø hiãøu theo mäüt caïch räüng raîi hån. Baín thán pháön tæí cuîng coï thãø coï cáúu truïc phæïc taûp, nãúu xeït riãng noï laì mäüt hãû thäúng. Vê duû : MFÂ laì mäüt HT ráút phæïc taûp nãúu xeït riãng noï, nhæng khi nghiãn cæïu ÂTC cuía HTÂ ta coï thãø xem MFÂ laì mäüt pháön tæí våïi caïc thäng säú âàûc træng coï ÂTC nhæ Nhoïm Nhaì maïy âiãûn - Bäü män Hãû thäúng âiãûn - ÂHBK Âaì Nàông . 50