Giáo trình cơ sở lí thuyết truyền tin - Chương 4: Mã hóa

pdf 71 trang huongle 11962
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình cơ sở lí thuyết truyền tin - Chương 4: Mã hóa", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfgiao_trinh_co_so_li_thuyet_truyen_tin_chuong_4_ma_hoa.pdf

Nội dung text: Giáo trình cơ sở lí thuyết truyền tin - Chương 4: Mã hóa

  1. Chương 4 MÃ HÓA Mục tiêu - Nghiên cứu các phương pháp mã hóa nguồn, mã hóa kênh - Giải thích được khái niệm mã hóa thống kê tối ưu, nêu được các bước mã hóa và giải mã của các phương pháp mã hóa thống kê tối ưu. - Giải thích được khái niệm mã hóa chống nhiễu, nêu được các bước mã hóa và giải mã của các phương pháp mã hóa chống nhiễu. - Vận dụng kiến thức để giải các bài toán mã hóa thống kê tối ưu, mã hóa chõng nhiễu. ì. MỞ ĐẦU Hệ thống truyền tin được sử dụng để truyền thông tin từ nguồn tin đến nơi nhận tin. Nguồn tin có thể có nhiều dạng, trong hệ thống radio, nguồn tin là nguồn âm thanh (tiếng nói hay âm nhạc); trong hệ thống truyền hình, nguồn tin là nguồn video, nó tạo ra các hình ảnh chuyển động. Những nguồn như thế được gọi là nguồn tương tự. Ngược lại, máy tính tạo ra và sử dụng các tín hiệu rời rạc (các số nhị phân hay các chữ cái trong bảng mã ASCII) được gọi là nguồn rời rạc. Hệ thống truyền tin rời rạc, khi truyền các tín hiệu liên tục thường phải thông qua một số phép biến đổi rời rạc (rời rạc hóa, lượng tử hóa) để đổi thành tín hiệu số (thường là nhị phân) rồi mã hóa. Ở đẩu thu tín hiệu phải thông qua một số phép biến đổi ngược lại như giải mã, liên tục hóa, để phục hổi tin tức. Sự mã hóa tin tức nhằm mục đích tăng tính hiệu quả và độ tin cậy của hệ thống truyền tin, nghĩa là tăng tốc độ truyền tin và khả năng chống nhiễu cùa tín hiệu khi truyền qua kênh. Thông thường tốc độ lập tin của nguồn thường còn rất xa mới đạt được thông lượng cùa kênh. Đế tâng tốc độ lập tin. người ta 64
  2. dùng phép mã hóa để thay đổi tính chất thống kê, làm giảm độ dư của thông tin không cẩn thiết của nguồn nhờ đó tiếp cận với thông lượng cùa kênh. Các phương pháp mã loại này gọi là mã hóa nguồn. Mặt khác, các tin mang các mã hiệu khi truyền trong kênh thường bị nhiễu phá hoại. Vì vậy, mã hiệu phải được xây dựng theo những quy tắc nhất định nhằm đảm bảo cho phía thu phát hiện được các sai nhầm đổng thời sửa được chúng. Loại mã hóa này được gọi là mã hóa kênh còn được gọi là mã chống nhiễu. Mã hóa kênh nhằm cải tiến kỹ thuật truyền tin, cho phép tín hiệu phát đi có khả năng chống lại ảnh hưởng cùa nhiễu. Mã hóa kênh làm giảm lỗi bít hoặc giảm tỷ số năng lượng bít trên mật độ nhiễu tại đẩu thu. li. MÃ HÓA NGUỒN 1. Một số khái niệm chung Mã hóa nguồn là phép biến đổi đẩu tiên cho nguồn nguyên thủy, đầu vào của phép biến đổi này có thể là nguồn tin rời rác hoác nguồn tin nguyên thủy. Trong cả hai trường hợp mục đích chính của phép mã hóa nguồn là biểu diễn thông tin với tài nguyên tối thiểu. Các vấn đề cẩn nghiên cứu đối với mã hóa nguồn là: mã hóa nguồn liên tục, mã hóa nguồn rồi rạc và nén dữ liệu. 1.1. Nguồn rời rạc - Nguồn rời rạc tạo ra các tin rời rạc thể hiện là chuỗi các ký hiệu ngẫu nhiên. - Đối vói mã hóa nguồn rời rạc, vấn đề cơ bản là thay đổi bảng chữ cái và phân bố xác suất để giảm bớt lượng ký hiệu cần dùng. Như vậy cấn quan tâm: + Entropi của nguồn trước khi mã hóa + Entropi của nguồn sau khi mã hóa + Hiệu quả của phép mã hóa + Giới hạn của phép mã hóa - Đối với nguồn rời rạc không nhớ: sử dụng từ mã có độ dài cố định hoặc từ mã có độ dài thay đổi. - Đối với nguồn dừng rời rạc: thường sử dụng thuật toán mã hoa nguồn Lempel-Ziv. 65
  3. 1.2. Nguồn liên tục - Nguồn liên tục tạo ra tín hiệu liên tục thể hiện một quá trình ngầu nhiên liên tục. Trong các hệ thống truyền thông, nguồn liên tục thường được biến đổi thành nguồn rời rạc, xử lý và truyền rồiỏ đẩu nhận lại biến đổi thành nguồn liên tục. - Rời rạc hóa nguồn liên tục: + Lấy mẫu nguồn tương tự: biến đổi nguồn tương tự thành một chuỗi các giá trị ngẫu nhiên liên tục tại các thời điểm lấy mẫu. + Lượng từ hóa nguồn tương tự: mã hóa các giá trị liên tục bằng nguồn rời rạc. - Tại đích, nguồn rời rạc được tổng hợp thành nguồn tương tự, cụ thể là: + Tái tạo lại các giá trị liên tục của chuỗi giá trị ban đẩu từ các ký hiệu cùa nguồn rời rạc. + Kết nối các giá trị liên tục thành một tín hiệu ngẫu nhiên đáu ra. + Do quá trình lượng từ, đầu ra sai khác so với đẩu vào gọi là sai số lượng tử. - Người ta thường sử dụng các kỹ thuật: mã hóa miền thời gian, mã hóa miền tần số, mã hóa mô hình nguồn đê* mã hóa nguồn liên tục. Trong mục này chúng ta chỉ khảo sát phương pháp mã hóa nguồn rời rạc. 2. Mã hoa nguồn ròi rạc không nhó 2.1. Mã hóa nguồn rói rạc với từ mã có độ dài cô định Nguyên tắc: mã hóa một ký hiệu nguồn bằng một chuỗi ký hiệu mã có độ dài n. Để đảm bảo phép mã hóa là một - một thì một ký hiệu nguồn ứng với một chuỗi ký hiệu nhị nhân, số lượng chuỗi ký hiệu nhị phân phải lớn hơn số ký hiệu nguồn. 2" > L hay n > log2L (4-1) Nếu L là lũy thừa của 2 thì giá trị nhò nhất cùa R là log2L. Nếu L không phải là lũy thừa của 2 thì giá trị cùa n = [log2L]+l. (Ở đây [x] chỉ số nguyên lớn nhất nhỏ hơn x). 66
  4. Hiệu quà cùa phép mã hóa được xác định bằng: K= ™. (4-2) lĩ 2.1.1. Với nguồn rời rạc đẳng xác suất - Hiệu quả của mã hóa đạt giá trị cực đại (bằng Ì) khi L là lũy thừa cùa 2 - Nếu nguồn tin ban đầu đẳng xác suất nhưng L không phải là lũy thừa của 2 thì n sai khác H(X) tối đa là Ì bit/ký hiệu. Khỉ log2L »Ì thì phương pháp mã hóa này có hiệu quả cao. Ngược lại, khi log2 L 0, xác suất giải mã khối sai Pe có thể nhỏ tuy ý nếu: N n = j>H(X) + e 67
  5. Ngược lại, nếu : n = — <H(X) + e thì pe dẩn tới ỉ khi J tiến tới vô hạn." - Từ định lý này ta thấy số lượng nhị phân trung bình để mã hóa cho một nguồn rời rạc không nhố với xác suất giải mã sai nhỏ tuy ý bị chặn dưới bời entropi H(X). Ngược lại nếu n < H(X) thì xác suất giải sai tiến tới 100% khi ỉ tăng tới vô hạn. 2.2. Mã hóa nguồn rời rạc với từ mã có độ dài thay đổi Mã hoa nguồn sử dụng với từ mã có độ dài thay đổi thường sử dụng phương pháp mã hóa thống kê tối ưu. 2.2.1. Khái niệm mã hoa thống kê tối ưu 9 Mục tiêu của mã hoa thống kê tối ưu là mã hóa tin rời rạc với số lượng các ký hiệu mã nhị phân tối thiểu. Do đó mã hóa thống kê tối ưu thuộc loại mã nén dữ liệu. Phương pháp mã hóa này khai thác đặc tính: không phải tất cả các ký hiệu trong một frame truyền có cùng tần suất xuất hiện, ví dụ trong cùng một chuỗi ký tự, sẽ có một số ký tự xuất hiện nhiều hơn các ký tự khác. Thay vì dùng một số bít nhất định mã hoa một ký tụ, chúng ta dùng các từ mã có độ dài nhỏ để mã hoa các ký tự có xác suất xuất hiện cao và ngược lại. Như vậy, số ký hiệu cẩn thiết để mã hoa cho chuỗi ký tự sẽ nhỏ hơn và tính kinh tế cũng cao hơn. Ví dụ: ký tự a, b xuất hiện nhiều nên dùng Ì bít để mã hoa, ký tự z xuất hiện ít có thể dùng 10 bít để mã hóa. Tiêu chuẩn của mã thống kê tối ưu đạt đến là độ dài trung bình lừ mã là nhò nhất. Một nguồn tin liên tục sau khi được rời rạc hóa, hoặc một nguồn tin rời rạc hóa đều được mô tả bằng cấu trúc thống kê của chúng. Trường hợp các lớp tin trong nguồn xuất hiện độc lập thống kê với nhau, sự mô tả nguồn tin được đơn giản hóa đi rất nhiều, lúc đó chỉ cần nêu quy luật phân bố xác suất xuất hiện của các ký hiệu trong bộ mã là đủ. Thông thường quy luật phân bố xác suất xuất hiện cùa các ký hiệu không đểu, lúc đó nhiệm vụ cùa phép mã hoa nguồn rời rạc là mã hóa sao cho độ dài trung bình cùa từ mã là nhò nhất. Cụ thể là dùng những từ mã ngắn cho các ký hiệu mã có xác suất xuất hiện lòm và ngược lại mã hóa các ký hiệu ít xuất hiện bằng những từ mã dài. 68
  6. Mã hóa thống kê tối ưu có ưu điểm là hệ số nén tương đối cao, phương pháp thực hiện tương đối đơn giản, đòi hỏi ít bộ nhớ, có thể xây dựng trên các mảng nhỏ hơn 64KB. Nhược điểm của nó là phải chứa cả bảng mã vào tệp tin nén thì phía nhận môi có thể giải mã được, do đó hiệu suất nén chì cao khi thực hiện các tệp tin lớn. 2.2.2. Định lý về giới hạn trên và dưới của chiều dài trung bình từ mã Định lý này phát biểu như sau: Gọi x= {xj,các xác suất xuất hiện tương ứng p(xj là nguồn rời rạc không nhớ vã entropi hữu hạn H(X). Có thể xây dựng một mã hiệu nhị phân có tính prefĩx và có độ dài trung bình từ mã n thoa mãn điêu kiện bất đẳng thức: H(X)<n<H(X) + l (4-3) Mã thống kê tối ưu là bộ mã có độ dài trung bình từ mã thoa mãn (4-3). 2.2.3. Mã thống kê tối líu Shannon - Fano Độc lập với nhau nhưng Shannon và Fano đã xây dựng phương pháp lập mã thống kê tối ưu trên cùng một cơ sở: độ dài từ mã tỷ lệ nghịch với xác suất xuất hiện. a. Các bước đề lập mã Bước Ì: Sắp xếp các tin Xì của nguồn X theo thứ tự xác suất giảm dần. Bước 2: Chia thành hai nhóm tin sao cho tổng xác suất mỗi nhóm gần bằng nhau. Bước 3: Mỗi nhóm gán cho một ký hiệu mã (0, Ì). Bước 4: Lặp lại bước 2 và 3 cho các nhóm con cho đến khi không thể tiếp tục được nữa. Bước 5: Đọc từ mã tương ứng với mỗi tin là tổ hợp tất cả các ký hiệu mã của các nhóm mà lớp tin đó phụ thuộc, lấy từ nhóm lớn đến nhóm nhỏ (tính từ trái sang phải). 69
  7. b. Sơ đồ giải thuật tạo mãShmmon - Fano Sai Bước 1 Bước 2 Bước 3 Hình 4-1: Sơ đồ giải thuật lạo mã Shannon - Fano c. Các thông số tối ưu L Thử bất đẳng thức Kraft (^2~"' £ Ì), đấu bằng được xảy ra. *=I Hiệu quả của mã (hiệu suất của mã hay còn gọi là hệ số tối ưu tương đối) ị HIY\ - Él0& />(*») K _ n\X ) _ fej Cho nguồn tin X = { Xi) i = 1 8, có các lớp tin và xác suất xuất hiện tương ứng p(Xị) = (0,25; 0,125; 0,0625; 0,0625; 0,25; 0,125; 0,0625; 0,0625|. Hãy lập mã thống kê tối ưu Shannon - Fano cho nguồn tin trên và tính hiệu suất mã. Đầu tiên, ta sắp xếp nguồn tin giảm dẩn theo xác suất xuất hiện, ghi vào bảng theo mẫu: 70
  8. Sổ lần chia nhóm P(Xi) Từ mã Xi 1 2 3 4 li Xi 0,25 0 00 2 0 *5 0,25 1 OI 2 0,125 0 100 3 *2 0 *6 0,125 1 loi 3 X, 0,0625 0 1100 4 1 0 x 0,0625 1 HOI 4 4 1 0,0625 0 mo 4 *7 1 X(| 0,0625 1 nu 4 = !>(*,.) log/>(x,.) = 2,75 _ i " = £p(*/H= 2,75 n ả. Nhận xét Mã Shannon - Fano là bộ mã có tính preíix. Mã Shannon - Fano có từ mã lương úng với lớp tin có xác suất xuất hiện lớn sẽ ngắn, những từ mã ứng với lớp tin có xác suất xuất hiện ít sẽ dài. Mã Shannon - Fano không duy nhất do phương pháp lấy tổng xác suất xấp xỉ nên trong nhiều trường hợp có nhiều hơn một cách chia. ứng với mỗi cách chia có thể sẽ cho ra các bộ mã có chiều dài trung bình khác nhau. Ví dụ 2 : Mã hóa nguồn x= ( JT,Ị, i = Ì,2 ,8 vói các xác suất lần lượt là: pU,) = 10,23; 0,2; 0,14; 0,12; 0,1; 0,09; 0,06; 0,061 7!
  9. Xi PM Từ mã pU) Từ mã ỉ 1 2 3 4 Xi 1 2 3 4 Xi 0,23 0 00 0,23 0 00 0 Xi *2 0,2 1 OI Xỉ 0,2 0 ì 0 010 Xỉ 0,14 0 100 Xì 0,14 1 1 011 0 *4 0,12 1 loi 0,12 0 100 *4 0 Xỉ 0,1 0 1100 x 0,1 1 loi 1 0 s *6 0,09 1 1 noi x„ 0,09 1 0 no 1 x7 0,06 0 mo X? 0,06 1 0 mo 1 1 Xg 0,06 1 nu -*« 0,06 Ị 1 nu « = 2,í n = 2,89 2.2.4. Mã thống kê tối ưu Huffman Năm 1952 Huffman đã đưa ra một thuật toán mã hóa dựa trên xác suất xuất hiện của các ký hiệu. a. Các bước lập mã Bước Ì: Sắp xếp các tin Xi của nguồn X theo thứ tự xác suất giảm dấn. Bước 2: Chọn hai lớp tin có xác suất nhỏ nhất gán cho mỗi lớp tin một ký hiệu mã (0,1). Bước 3: Thay thế hai lớp tin nhỏ nhất này bằng một tin mới có xác suất bằng tổng hai xác suất. Bước 4: Coi như có nguồn tin mới, quay lại làm từ bước Ì cho đến khi tổng h hai xác suất bằng Ì thì dừng lại. Bước 5: Đọc từ mã tương ứng với mỗi lớp tin là tổ hợp các ký hiệu mã gán cho các nhóm mà lớp tin đó phụ thuộc vào, lấy từ nút gốc đến nút cuối. 72
  10. b. Sơ đó giải thuật lạo mã c. Các thõng số lôi im. L Thử bất đẳng thức Kraft (X2 "' -1 )• dấu bằnẽ đuf(?c xảy ra- k-í Hiệu quả của mã (hiệu suất của mã hay còn gọi là hệ số tối ưu tương đối) L lì 1=1 Ví dụ 3: Cho nguồn tin X = { Xi) i = Ì, 2, 8, có các lớp tin và xác suất xuất hiện tương ứng p õõ = ( 0,36; 0,14; 0,13; 0,12; 0,1; 0,09; 0,04; 0,02} Hãy lập mã thống kê tối ưu Huffman cho nguồn tin trên và tính hiệu suất bộ mã Đầu tiên ta sắp xếp nguồn tin giảm dẩn theo xác suất xuất hiện, ghi vào bảng theo mẫu: 73
  11. X, Số lẩn chia nhóm A P(Xi) Từ mã n. i 1 2 3 4 5 6 7 Xi 0,36 0 00 2 x2 0,14 0 1 0 010 3 Xj 0,13 1 011 3 x„ 0,12 0 0 1 100 3 *5 0,1 1 loi 3 Xí 0,09 0 1 no 3 0,04 0 1 mo 4 x« 0,02 1 liu 4 H(X)= -|>(x,)log2 />(*,)= 2,63 _ L n =Ỵ jnip{xi) = 2,l K = * 97,4% í/. Miậ/Ỉ xé/ - Mã Huffman là bộ mã có tính prefix. - Mã Huffman có từ mã tương ứng với lớp tin có xác suất xuất hiện lớn sẽ ngắn, những từ mã ứng với lớp tin có xác suất xuất hiện ít sẽ dài. - Mã Huffman là mã duy nhất. - Phương pháp mã hoa tối ưu Huffman sẽ trờ nên nặng nể khi số tin nguồn quá lớn. Trong trường hợp này người ta dùng một biện pháp phụ để giảm nhẹ việc mã hoa. Trước tiên liệt ké các tin nguồn theo thứ tự xác suất giảm dẩn. sau đó ghép thành từng nhóm những tin có xác suất gần bằng nhau. Dùng mã đều để mã hoa các tin trong cùng mội nhóm. Sau đó, xem các nhóm tin như một khối tin và dùng phương pháp mã hoa Huffman để mã hoa các khối tin. Từ mã cuối cùng tương ứng mỗi tin nguồn gồm 2 phấn: mã Huffman và mã đều. 74
  12. Kết luận: Mã hóa thống kê tối ưu có các đặc điểm: - Mã thống kê tối ưu là mã có độ dài từ mã cùa các lớp tin tỳ lệ nghịch với xác suất xuất hiện của chúng. - Đây là bộ mã của phép mã hóa tối ưu cho nguồn vì kết quả mã hoa là một bộ mã có chiểu dài trung bình là nhỏ nhất trong tất cả các phép mã hóa cho nguồn. - Các ký hiệu khác nhau của bộ mã phải đồng xác suất, có như vậy lượng tin mỗi ký hiệu mới đạt trị số cực đại. - Xác suất xuất hiện ký hiệu trong từ mã không phụ thuộc vào sự có mặt của các ký hiệu ra trước. L - Thử bất đẳng thức Kraft C^L- "' -1), dấu bằng được xảy ra vì vậy đây là bộ mã có tính prefĩx. 3. Mã hoá nguồn dừng rời rạc Các thuật toán mã hóa thống kê tối ưu phải biết xác suất xuất hiện của tất cả các tin. Tuy nhiên, trong thực tế, tính chất thống kê của nguồn thường không biết trước và mỗi chúng ta thường ước lượng các giá trị xác suất cùa nguồn rời rạc bằng cách quan sát một chuỗi dài các ký hiệu. Ngược lại, thuật toán mã hóa nguồn Lampel-Ziv lại độc lập với tính chất thống kê cùa nguồn do đó rất thích hợp đế mã hóa nguồn dừng rời rạc. Trong thuật toán này, một dãy các ký hiệu tin cùa nguồn rời rạc được chia thành các khối có độ dài thay đổi gọi là các câu. Một cáu mới - là một khối các ký hiệu cùa nguồn và là một câu đã thêm vào một ký hiệu cuối cùng. Các câu được liệt kê trong một từ điển kèm với vị trí xuất hiện. Để mã hoa câu mới, ta chỉ ra vị trí trong từ điển và chèn thêm ký hiệu mới vào cuối. Ví dụ xét dãy ký hiệu nhị phân sau: 1010110100100111010100001100111010110001 loi Ì Chia dãy ký hiệu trên thành các câu như sau: Ì 0,10,11,01,00,100,111,010,1000,011,001,110, lũi, 10001, lon Ta thấy rằng mỗi câu trong dãy là ghép của câu cũ và một ký hiệu mới. Để 75
  13. mã hóa các câu, ta xây dựng một từ điển như hình (4-3). Các vị trí của từ điển liên tiếp nhau, bắt đầu bằng Ì và tăng dần (trong trường hợp này là 16). Các từ mã được xác định bời vị trí của một càu có trước trong từ điển và ký hiệu mới được thêm vào trong từ mã. Khởi đẩu, vị trí 0000 dùng để mã hóa cho một càu chưa xuất hiện trong từ điển. VỊ trí trong từ điển Nội dung Từ mã 0001 1 00001 0010 0 00000 0011 10 00010 0100 li 00011 0101 OI 00101 0110 00 00100 om 100 00110 1000 in 01001 1001 010 01010 1010 1000 01110 lon 011 01011 1100 001 01101 noi no 01000 mo loi 001 ụ nu 10001 10101 lon moi Hình 4-3: Từ điển dùng trong thuật toán Lempel • Ziv Để giải mã cân xây dựng lại từ điển ở phía thu giống như ở phía phát và sau đó giải mã lẩn lượt các từ mã nhận được. 76
  14. Ở ví dụ trên, mã hóa 44 ký hiệu nhị phân của nguồn thành 16 từ mã, mỗi từ mã có độ dài 5 bít, như vậy là không thực hiện việc nén số liệu do chuỗi ký hiệu được quan sát quá ngắn. Nếu chuỗi ký hiệu được quan sát thêm thì thuật toán sẽ hiệu quả hơn và có nén số liệu ở đầu ra cùa nguồn. Độ lốn của từ điển chỉ phụ thuộc vào bộ nhớ dùng trong lưu trữ. Thuật toán Lempel - Ziv được dùng rộng rãi trong việc nén số liệu các tệp trong máy tính. Các tiện ích như compress và uncompress trong hệ điều hành DOS, UNIX xuất phát từ thuật toán này. HI. MÃ HOA KÊNH ì. Khái niệm Thông tin truyền qua kênh thường bị nhiễu phá hoại gây ra các lỗi nên cần phải có các phương pháp mã hóa có khả năng phát hiện lỗi/ sửa lỏi. Định lý Shannon mã hóa kênh có nhiều ờ chương li đã chỉ ra rằng: nếu thông lượng kênh lởn hơn tốc độ lập tin của nguồn thì có thể truyền tin với sai sổ nhỏ tuy ý. Định lý này là cơ sở lý thuyết cùa các loại mã chống nhiễu. Mã hóa kênh là biện pháp dùng các mã hiệu cho phép phát hiện lỗi hoặc có khả năng tự sửa lỗi để mã hóa tín hiệu truyền qua kênh. Mã hóa kênh nhằm cải tiến kỹ thuật truyền tin cho phép tín hiệu phát đi có khả năng chống lại ảnh hưỏng của nhiễu. Mã hóa kênh làm giảm lỗi bít hoặc giảm tỷ số năng lượng bít trên mật độ nhiễu yêu cầu tại đầu thu. Trong mục này chúng ta sẽ khảo sát kỹ bốn loại mã chống nhiễu được dùng rộng rãi nhất trong truyền số liệu đó là: Mã kiểm tra chẩn lẻ (Patity), mã tuyến tính, mã vòng kiểm tra (CRC), mã Hamming. 2. Nguyên tắc phát hiện lỗi và sửa lỗi Việc phát hiện lỗi và sửa lỗi phụ thuộc vào tính chất thống kê của kênh và nhiêu. Có hai loại lỗi: - Lỗi độc lập thống kê: các lỗi xuất hiện riêng lẻ, không liên quan lẫn nhau. - Lỗi chùm: lỗi liên quan chặt chẽ vói nhau, thường xuất hiện cùng một lúc. 2.1. Nguyên tác phát hiện lỗi của mà hiệu Khả năng phái hiện sai của một mã hiệu dựa trên một ý tưởng rất đơn giản: 77
  15. nếu mã hiệu là tập hợp những từ mã có độ dài n thì số các từ mã (tổ hợp mã mang tin) được chọn phải nhỏ hơn tổng số các tổ hợp n ký hiệu mã. Số các tổ hợp không làm từ mã được gọi là tổ hợp cấm. Khi chịu tác động cùa nhiễu, một từ mã chuyển đổi sai thành một từ mã khác thì không thế phát hiện được lỏi sai, nếu chuyển đổi thành tổ hợp cấm thì sẽ phát hiện được đã thu sai, do vậy khả năng phát hiện sai được tăng cường nếu số tổ hợp cấm tăng lên. Một bộ mã cho phép phát hiện sai phải là bộ mã được xây dựng sao cho mọi từ mã bị sai trên dường truyền phái được chuyển thành tổ hợp cấm. 2.2. Nguyên tác sửa lỗi của mã hiệu: Cơ chế sửa sai của mã hiệu đổng thời cũng là nguyên lý giải mã phải dựa vào tính thống kẽ của kênh để đảm bảo sai nhẩm tối thiểu. Nói một cách khác khi nhận được một tổ hợp cấm, thiết bị sửa sai có nhiệm vụ quy về từ mã phát đi với xác suất sai tối thiểu. Muốn vậy cẩn phải dựa vào tính chất nhiễu trong kênh để phân nhóm các tổ hợp cấm, mỗi nhóm tương ứng với một từ mã mà chúng có khả năng bị chuyển đổi sang nhiều nhất. Mội bộ mã cho phép sửa được sai là một bộ mã được xây dựng sao cho mỗi từ mã khi bị sai sẽ chuyển thành những tố hợp cấm và là những tổ hợp cấm cùa chì riêng nó. Ví dụ mã hiệu gồm 4 từ mã 0001, 0101, 1000, 1100 khi bị sai cụm gồm 2 ký hiệu kế cận (véc tơ sai 0011,0110,1100) sẽ chuyển thành 12 tổ hợp cấm theo cụm. Cơ chế sửa chữa sai dựa theo bảng giải mã sau: Từ mã 0001 010) 1000 1100 0010 0110 lon liu Tổ hợp cấm om 0011 mo 1010 HOI 1001 0100 0000 Khi nhận được các tổ hợp cấm 0010 hoặc loi Ì sẽ giải mã về 0001,1000 3. Mã Parity 3.1. Khái niệm Phương pháp thông dụng nhất được dùng để phát hiện các lỗi bít trong 78
  16. truyền dữ liệu không đổng bộ và đổng bộ hướng ký tự là phương pháp mã Parity. Phương pháp này được xây dựng dựa trên nhận xét sau: nếu số ký tự Ì của mỗi từ mã luôn là chần thì khi truyền nếu bị sai lẻ số vị trí thì tổng số ký tự Ì sẽ là lẻ và ngược lại. Do đó có hai phương pháp kiểm tra đó là Parity chẩn và Parity lẻ, người ta thường dùng kiểm tra chỉn cho truyền không đồng bộ và kiểm tra lè cho truyền đổng bộ. Xét phương pháp tạo mã và giải mã với Parity chẵn. Thuật toán tạo mã đơn giản nhất là thêm vào cuối mỗi tổ hợp mã mang tin một bít Parity sao cho nếu tổng các ký hiệu Ì của tổ hợp mã mang tin là lẻ (thực hiện bằng cách cộng modul 2 các bít Ì với nhau) thì bít Parity thêm vào có giá trị Ì, nếu tổng các ký hiệu Ì là chẵn thì giá trị thêm vào có giá trị 0. Khi giải mã, mạch kiểm tra sẽ xác định xem số bít Ì trên mỗi từ mã nhận được có đúng là chẩn không. Nếu không nó sẽ phát hiện được các lỗi đơn bít (số lượng bít lỗi là một số lẻ) và yêu cầu truyền lại. Nếu truyền đúng, nó sẽ loại bỏ bít Parity để lấy lại thông tin gốc. 3.2. Kiểm tra Parity theo ký tự Một ví dụ điển hình của việc sử dụng mã parity đó chính là bộ mã ASCII. Trong bộ mã này, mỗi ký tự có 7 bít và một bít kiểm tra, với kiểm tra chẵn, giá trị của bít kiểm tra là 0 nếu số lượng các bít có giá trị Ì trong 7 bít là chẩn và có giá trị Ì trong trường hợp ngược lại. Còn kiểm tra lẻ thì ngược lại. Thông thường người ta sử dụng kiểm tra chẵn và bít kiếm tra gọi là p. Giá trị kiểm tra đó cho phép ở đầu thu phát hiện những sai sót đơn giản Thí dụ Kí tự Mã ASCII Từ mã phát đi A 1000001 10000010 ~ bitp E 1010001 10100011 }.ĩ. Phương pháp kiểm tra theo ma trận Khi truyền đi một khối thông tin, mỗi ký tự được truyền đi sẽ được kiểm tra tính chan lẻ theo chiều ngang, đồng thời cả khối thông tin này cũng được kiểm tra tính chẵn lẻ theo chiều dọc. Như vậy cứ sau một số byte nhất định thì mót byte kiểm tra chẵn lẻ cũng được gửi đi. byte chẵn lẻ này được tạo ra bằng cách kiểm ta tính chẵn lẻ của khối ký tự theo cột. Dựa vào các bít kiểm tra 79
  17. ngang và dọc ta xác định được toa độ của bít sai và sửa được bít sai này. Một Frạme coi như một khối ký tự sắp xếp có 2 chiều, mỗi ký tự có bít kiếm tra chăn lẻ p. Nếu ta sắp xếp các bít của ký tự đúng vị trí tương ứng từ trên xuống thì ta có một khối các ký tự: bít bi! bít bitParity Ì 2 n b„ bui bui Ri b,2 b22 b„2 R2 Ký tựn bìm b2m ban, Rm Bít kiểm tra cột c, Q c„ Cu, Hình 4-3: Kiếm tra khối BCC Tính theo chiều ngang, giá trị bít chẵn lẻ p của dòng thứ i sẽ là : Rj = bu © b2j eb3j © e bnj ở đây ffi là ký hiệu của phép cộng modul 2. Vối Rị: bít kiểm tra thứ tự th ứ j bjj : bít thứ i của ký tự thứ j n : số lương bít trong một ký tự Nếu tính theo chiều dọc, ta có: c, = bn ©bi2 © bi, ® bim Với Cj: bít kiểm tra cột thứ i m: số lượng ký tự trong một Frame Tuy nhiên phương pháp này cũng không hoàn toàn hiệu quả. Giả sử bít thứ nhất và bít thứ ba của ký tự thứ nhất bị sai, kiểm tra hàng không thấy sai, nhưng kiểm tra chẩn lẻ của cột sẽ phát hiện bít thứ nhất và thứ ba bị sai, ta biết sự truyền bị sai nhưng không biết saiỏ vị trí nào. Bây giờ, lại giả thiết rằng bít 80
  18. thứ nhất và bít thứ ba cùa ký tự thứ 5 cũng bị sai đổng thời vói bít thứ nhất và bít thứ ba củ; ký tự l.iứ nnất, lúc đó ta không phái hiện được cột bị sai, kết quà thu được bị sai nhưng ta không phát hiện được. 4. Mã tuyến tính Gọi là mã khối tuyến tính vì bắt nguồn từ chỏ các tin của nguồn được phân thành từng khối tách bạch, và sự mã hóa hay giải mã được tiến hành theo từng khối, mỗi khối được mã hóa bằng một từ mã riêng rẽ. Các từ mã có độ dài bằng nhau cho nên mã này thuộc loại mã đổng đểu. Đứng trên quan điểm toán học mà xét người ta gọi mã này là mã tuyến tính vì chúng thuộc phạm vi đại số tuyến tính cho nên cách biểu diễn thuận tiện và gọn, nhất là phương pháp biểu diễn ma trận. 4.1. Định nghĩa Ta có véctơ thông tin i của k bít i = (i.,i2 ik) ije I 0,11 Tạo ra từ mã có độ dài n c = (i,i„i2, ,ik,ck+ cn) CjS (0,1) Thông qua cách chuyển đổi tuyến tính c = i.G (4-4) với G = [Ik.P] (4-5) Trong đó: Ik là ma trân nhận dạng (đơn vị) có kích thước kxk, p là ma trận k dòng và (n-k) cột. Tập 2k từ mã c được gọi là mã tuyến tính. Ma trận G gọi là ma trận tạo mã (ma trận sinh). Chú ý rằng tổng của hai từ mã bất kỳ c' và c" cũng là một từ mã c' + c" = (i' + i" c„' + c„") (4-6) c', c" và c'+c" € c Theo các công thức trên bít kiểm tra thứ j của CktJ bằng tích vô hướng cùa véctơ j với véctơ dòng thứ j cùa p, như vậy, có thể nói rằng c là một từ mã khi và chỉ khi: CH = 0 (4-7) 81
  19. T H=[P .I„.k] (4-8) PT là ma trận chuyển vị của ma trận T và H được gọi là ma trận kiểm tra chẩn lẻ của mã. 4.2. Tính chất 4.2.1. Hội chứng (Syndrome) Xét một mã tuyến tính C(n,k) với ma trận sinh G và ma trận kiếm tra H. Gọi c = ( i, i|, i2, ik, Q.t , c„) là từ mã được truyền đi qua kênh có đặc tính nhiêu. Gọi X là véctơ có độ dài n nhận được từ kênh truyền: X = (x„ x2 x„) X có thể khác c do có nhiễu và: X = c + e (4-9) với e = (e„ e2, ,e„) gọi là véc tơ sai số. Dĩ nhiên là phía thu không biết được c và e khi nhận được r. Bộ giải mã phải xác định r có chứa lỗi truyền hay không. Nếu lúc đó lỗi được phát hiện thì bộ giải mã sẽ thực hiện định vị lỗi và sửa lỗi hoặc yêu cầu truyền lại. Khi nhận được r bộ giải mã sẽ tính bộ (n-k) thành phẩn. S(x) = x.HT (4-10) S(x) được gọi là hội chứng (Syndrome) cùa X. Ta có thể thiết lập tính chất sau: Tính chất \ :_Một véc tơ X là một từ mã khi và chì khi nó hội chíttxg với 0. S(x) = 0 khi và chỉ khi X là từ mã, S(x) # 0 nghĩa là X không là từ mã. Có thể có vài véctơ lỗi không bị phát hiện, điều đó chứng tỏ X là có lỗi nhưng S(x) = X.HT = 0 (xảy ra khi véctơ lỗi e giống với một từ mã khác 0) và X là tổng hai từ mã và cũng là một từ mã do đó không phát hiện được sai. 4.2.2. Khoảng cách tối thiểu giữa những từ mã Khoảng cách tối thiểu giữa những từ mã là một thông số phụ thuộc vào dung lượng đúng (conection) đúng của mã. Các tính chất sau cho phép ta nhận biết được khoảng cách tối thiểu đó. Tính chất 2: Khoảng cách tối thiểu giữa những từ mã của một mã tuyến tính bâng trọng lượng Hamming tối thiều của nó. 82
  20. Ở đây trọng lượng Hamming cùa một từ mã được định nghĩa là số thành phần khác 0 của từ mã. Trọng lượng Hamming tối thiểu của bộ mã là trọng lượng Hamming nhỏ nhất trong tập trọng lượng Hamming cùa các từ mã trong bộ mã. Tính chất 3: Trong một mã tuyến tính, khoảng cách Hamming tối thiểu là m tồn tại ít nhất một tập m dòng của ma trận H mà tổng bằng 0. Nói cách khác, mỗi tập con của ít nhất m dòng của H có tống bằng 0. Từ đó, nếu c là một từ mã, trọng lượng Hamming tối thiểu là m thì C.HT = 0, m dòng của H cũng có tổng bằng 0. 4.2.3. Sửa và tìm sai, bảng tiêu chuẩn và dung lượng sửa sai của mã Già thiết c là từ mã truyền trên kênh trực tiếp. Khi nhận được X, nhiệm vụ của bộ giải mã là đánh giá e với khả năng chính xác lớn nhất và trả lại bộ phận thu véc tơ c = X + e. Để xác định được e, bộ giải mã sắp xếp véctơ nhận được X và ma trận H cho phép, ta tính ra hội chứng S(x) của X. Nếu S(x) = 0, X là từ mã và cũng là véc tơ sai số. Thông thường khả năng sai p trên các bít là nhỏ, sai số là độc lập và kênh truyền đối xứng nhị phân và vì vậy bộ giải mã quyết định e = 0 và hoàn trả bộ thu giá trị X. Nếu S(x) # 0, thật sự có lỗi. Dựa vào chiến lược chấp nhặn người ta có thể cảnh báo hoặc cho truyền lại hoặc có thể sửa sai trực tiếp. Trong trường hợp sửa sai trực tiếp người ta chọn cho véctơ sai một hội chứng S(x) với trọng lượng bé nhất. Dung lượng sửa sai của một mã có thể quyết định bởi tính chất sau: Tính chất 4: Trên một kênh nhị phân đối xứng và sai số độc lập, một mã tuyến tính C(n,k) cho phép phát hiện và sửa sai với trọng lượng <e khi và chỉ khi trọng lượng Hamming của tất cả các lừ mã là tốt nhất với I+. 5. Mã vòng 5.1. Định nghĩa Một mã tuyến tính c (n,k) (với n là độ dài từ mã, k là số ký hiệu mã mang tin r = n-k là số ký tự điều khiển kiểm soát lỗi) nếu sự hoán vị vòng của một từ mã cũng là một từ mã khác. Nghĩa là dịch vòng (sang phải hay trái) cùa một từ mã thì kết quả cũng là một từ mã. ở đây quy ước dịch phải 83
  21. c = ( Cn-l.c„.2 c„) 6 c o (c„.2, c„.3 c0, c„.,) 6 c Ta có thể viết từ mã dưới dạng đa thức: n 1 2 c(x) = c„.lx" + c„.2x""+ +C|X+C„ (4-11) Ví dụ: Bảng sau đây trình bày một mã vòng c (7,4) Tin Từ mã Đa thức Tin Từ mã Đa thức 0000 0000000 0 0001 0001101 X3 + X4 + X6 1000 1101000 ì + X2 + X3 1001 1100101 l+x + x4 + x6 0100 0110100 X + X2 + X4 0101 0111001 x+ X2 + X1 + X6 1100 1011100 l+x2 + x, + x4 HOI 1010001 1 + X2 + X6 0010 0011010 X2 + X3 + X5 0011 0010111 X2 + X4 + X5 + X6 2 2 5 1+ x+ X +x' + 1010 1110010 1+ X + X + X lon 1111111 4 5 6 X + X + X 0110 0101110 x+ X5 + X4 + X5 om 0100011 X + X5 + X6 mo 1000110 1+ x" + X5 im 1001011 1+ X1 + X5 + X6 5.2. Đa thức sinh, ma trận sinh và ma trận kiểm tra của mã vòng Một đặc điểm quan trọng cùa mã vòng là những từ mã đều chia chẩn cho g(x) gọi là đa thức sinh (đa thức tạo mã), sở dĩ gọi như vậy là vì từ đa thức này có thể tạo ra các từ mã của mã vòng xuất phát từ những đa thức mang tin đơn giản. Một khối dữ liệu k phần tử (Uo, u, Un) có thể xem như một đa thức thông tin bậc k. k k2 u(x) = uk.iX"' + uk.2x + + U|X + u„ (4-12) Bậc của mã vòng C(n,k) là n thì bậc của đa thức sinh g(x) là r = n-k r g(x) = gfx+gMx'-'+ +g,x+ go (4-13) Nếu đa thức sinh được biểu điển dưới dạng tổ hợp go, g,, , gr thì mã vòng có thể biểu diễn bằng một ma trận sinh có dạng: 84
  22. go gi g2 g 0 0 0 0 go gi gr0 0 G = 0 0 go •••• 0 0 ũ 0 go Hàng thứ nhất của ma trận sinh đại diện tổ hợp của đa thức sinh cộng k-1 số 0, như vậy số cột của ma trận bằng n = r+k. Các hàng còn lại được thiết lập bằng cách lập lại hàng ngay trên nó và dịch đi một vị trí. Ma trận có k hàng đại diện cho k tổ hợp mã, những tổ hợp còn lại (2k - k - Ì) sẽ được xác định bằng cách lấy những tổ hợp tuyến tính bất kỳ cùa những hàng trong số k hàng của ma trận. Bằng những phép biến đổi tuyến tính ví dụ như tổng các tổ hợp khác nhau của các hàng cùa ma trận sinh để có thể chuyển ma trận dưới dạng chuẩn tắc: Pn P12 p„ 10 0 P21 P22 í»Sí OI 0 (4-15) Pki Pk2 Pt, ỌC. r k Từ cách biểu diễn ma trận sinh cho thấy một hàng bất kỳ của ma trận đểu là bản thân đa thức sinh thêm một vài số không cho nên một từ mã bất kỳ là tổ hợp tuyến tính của một số hàng ma trận đều mang tính chất chia chần cho đa thức sinh. Cách biểu diễn của một ma trận sinh dưới dạng chuẩn tắc cho thấy: một từ mã (một hàng của ma trận hoặc tổng một số hàng cùa ma trận) gồm hai phần: một phần có r ký hiệu thừ Pjj (i = l,2, k; j = l,2 r) và phẩn còn lại có k ký hiệu mang tin. Để xác định đa thức sinh, chúng ta dựa trên tính chất: Dơ thức sinh g(x) của mã vòng C(n,k) là mội thừa số cùa x"+I Cũng từ những tính chất trên ta có thể xây dựng ma trận sinh dạng chuẩn tắc bằng cách chia x"'1 cho đa thức sinh g(x), các số dư trong phép chia sẽ thành ma trận các số dư dạng A(r I, (có r cột, k hàng), hợp với ma trận Tt có 85
  23. kích thước k X k (là ma trận cùa cả các phần tử trên đường chéo chính từ phải sang trái bằng 0, còn tất cả các phần tử con lại đều bằng 0). 0 0 0 Ì 0 0 Ì 0 (4-16) Ì 0 0 0 Tạo thành ma trận sinh: (4-17) Phương pháp thực hiện sửa sai có thể thực hiện dựa trên ma trận phát hiện và sửa sai M được xây dựng như sau: M = (4-18) Ma trận / tì đại diện tất cả các véctơ sai của từ mã. 5.3. Mã hóa mã vòng Mã hóa mã vòng c (n,k) gồm 3 bưốc: Bước ì: Nhân đa thức thông tin u (x) với x""k. Bước 2: Chia u(x). x""k cho đa thức sinh g(x) ta được phẩn dư b(x), đây là các bi! kiểm tra còn gọi là các bít GRC. Bước 3: Hình thành từ mã c(x) = b(x)+ u(x). x""k. Ví dụi: Mã hoa bản tin u(x) =1010 bằng bộ mã vòng C(7,4). Trước tiên chúng ta xác định đa thức sinh g(x) và ma trận phát hiện và sửa sai M của bộ mã vòng này: Do X7 + Ì = (x+l)(x3 + x2+l)(x3 + X+I) đa thức này có hai thừa số có bậc n - k = 3, mỗi thừa số sẽ là một đa thức sinh và tạo ra mã vòng C(7,4). Giả sù ta thống nhất chọn đa thức sinh g(x) = x'+ x+1. 86
  24. Ma trận dư A(r,k) là các số dư của phép chia x""1 cho g(x). 0 Ì Ì KI M_ 110 A(r,k)= ; ; » Ì 0 Ì Ma trận sửa sai của mã vòng C(7,4) với đa thức sinh g(x) = X3 + x+1 là: 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 ỉ 0 0 0 0 0 0 1 0 1 Ta tiến hành mã hoa như sau: Bước ỉ: Nhân đa thức thông tin với x""k. u(x) = X5 + X u(x). x"-k = X V + X) = X6 + X4 Bước 2: Chia u(x). x"'k cho đa thức sinh g(x) x6 + x4 x'+ x+1 x"+X4+JJ x'+l X5 x'+ x+1 x+ 1 Vậy b(x) = X +1 -ó (OI 1) đây là các bít kiểm soát lỗi. Bước 3: Hình thành từ mã c(x) = b(x)+ u(x). x""k c(x) = x6 + x4+ x+1 1010011 87
  25. Điêu này chứng tỏ từ mã được tạo thành từ k bít tin cần mã hóa ghép với r = n-k bít kiểm soát lỗi. Mạch tạo CRC: Để tạo mã CRC có thể dùng phần mềm để tính CRC cho từng gói dữ liệu, hoặc tính toán sẩn lưu vào bảng giá trị CRC cho 256 byte sau đó khi tính CRC cho từng byte thì tra bảng. Tuy nhiên trong thực tế để nhanh và giám thời gian hoạt động của bộ vi xử lý người ta thường dùng phần cứng đế tạo CRC và kiểm tra. Mạch điện sẽ bao gồm các bộ ghi dịch và các bộ cộng modul 2, số lượng cột của bộ ghi dịch phụ thuộc vào giá trị c đã chọn cho g (x) và cũng là số bít cho mã CRC. Người ta có thể tạo mã CRC dài 12 bít, 16 bít, 32 bít Vấn đề là chọn g(x) sao cho phù hợp. Hiện nay có 3 đa thức sinh được coi là chuẩn quốc tế đó là: CRC-16: g(x) = x'6 + xl5+x2+l CRC- CCITT: g(x) = X16 + xl2+ x2+ Ì CRC-12 g(x) = xl2 + x" + x'+x2+x+Ì Mạch tạo CRC-16 cho 16 bít như hình vẽ sau: Dữ liệu ọ D — Q D—Q D — Q 0D D-CÍỊ— 0 Q D— Q Ũ . vào x', ,x*, , X*. ,x", , x" ic'l Lọ D _ QD —ọ D Q D Q D ọ D — Q D — Q 0 Q 0 Hình 4-4: Mạch tạo CRC với g(x) = x"1 + x'!+ s+l (không hiền thị CLK +RST) 5.4. Giải mã mã vòng Bước ỉ: Đem tổ hợp mã nhận được chia cho đa thức sinh. Nếu phép chia chỉn chứng tỏ tổ hợp mã nhận được chính là lừ mã đã phát đi. Nếu phép chia có dư chứng tỏ tổ hợp mã nhận được có ký hiệu sai. 88
  26. Bước 2: Lấy số dư này đối chiếu với ma trận phát hiện và sửa sai đế biết vectơ sai. Bước 3: Để sửa sai đem tổ hợp mã nhận được cộng (modul 2) với véc tơ sai để tìm từ mã đã phát đi. Bước 4: Loại bỏ các r bít kiếm soát lỗi đã ghép vào cuối từ mã phát đi đế thu được tin ban đầu. Ví dụ: Với bộ mã vòng C(7,4) sử dụng đa thức sinh g(x) = x'+ x+1. Giả sử nhận được tổ hợp mã là 1000011. Hãy tìm tin tương ứng đã phát. Việc giải mã được tiến hành như sau: Bước ỉ: Lấy tổ hợp mã nhận được chia cho đa thức sinh g(x). p(x)= 1000011 = X6 + X + Ì + X + Ì x'+ x+1 x'+l é+yẽ + X+ 1 X4 + X2 + X x' + X2 +1 X-1 + X +1 Vậy số dư = X2 + X o (110) chứng tỏ tổ hợp mã nhận được có ký hiệu sai. Bước 2: Lấy số dư đói chiếu với ma trận phát hiện và sửa sai M của bộ mã C(7,4) sử đụng đa thức sinh g(x) = x'+ x+1 ở (4-19) ta được véctơ sai e= 0 Ì 0 0 0 0 0 Bước 3: Đem tổ hợp mã nhận được cộng modul 2 với véctơ sai để tìm từ mã đã phát. e =0 0 10 0 0 0 p(x) = Ị 0 0 0 0 1 Ì c(x) =10 10 0 11 Bước 4: Loại bỏ 3 bít kiểm soát lỗi ở cuối từ mã để được tin đã phát u(x)= 1010 89
  27. 6. Mã chống nhiễu Hamming 6.1. Khái niệm mã Hamming Mã Hamming là một loại mã tuyến tính, mã này được R.w. Hamming đưa ra và được đùng trong hệ thống thông tin có sử dụng FEC. Mã này có khả năng sửa sai một lỗi. Mã có đặc điểm là sơ đổ tạo mã và giải mã đem giản. Các từ mã của mã Hamming có độ dài n = k + r. Số bít kiểm tra r và số bít mang tin k của mã phải thoa mãn hệ thức k<2'-l-r. (4-21) Khi số bít mang tin tăng thì số bít kiểm tra cũng tăng nhưng tốc độ tâng cùa số bít mang tăng nhanh hơn nhiều so với tốc độ tăng của số bít kiểm tra cho nên khi số bít mang tin lớn tính kinh tế của mã càng cao vì vậy mã Hamming được sử dụng rộng rãi trong thực tế. Việc tạo và giải mã Hamming dựa vào ma trận kiểm tra H(r,n) Ma trận này có tính chất quan trọng sau: Ma trận gồm r hàng và n cột, với các cột là các số nhị phân r bít có giá trị tăng từ Ì đến n( giá trị của cột hi bằng i). Nếu một véc tơ V = (à,, a2, ,a„) là một từ mã của mã Hamming thì với bất kỳ hàng nào của H ta cũng có: (4-22) Ví dụ : Bộ mã Hamming C(7,4) có 24 =16 từ mã, mỗi từ mã có độ dài 7 bít, có 4 bít mang tin và 6 bít kiểm tra. Ma trận kiếm tra của mã là H (3,7) 0 0 0 111 H(3,7) = 0 110 0 1 (4-23) 10 10 10 Các từ mã cùa bộ mã là c(x) = ( 0000000, 1101001, 0101010, 1000011. 1001100,0100101,1100110,0001111,1110000,0011001, 1011010, 0110011. 0111100, 1010101, 0010110, 1111111) từ mã nào cũng thoa mãn điều kiện (*) chẳng hạn từ mã 1100110 luôn có: 90
  28. 1®0 ® 1®0 e 0®0 © 0®1 © 1®1 © 1®1 © 0®1 = 0 i®oe 1 1 ©0®1 ©0®0® i®oe 1®1 ©0®1 =0 loi © 1®0 e 0®1 e 0®0 © 1®1 e 1®0 © 0®1 = 0 Các phép nhân(®) và cộng(ffi) ở đây là nhân và cộng modul 2. 6.2. Tạo mã Để tạo mã trước hết cần xác định ma trận kiểm tra của bộ mã sau đó xác định vị trí và giá trị các bít kiểm tra trong mỗi từ mã sau đó tiến hành xác định bít từ mã. Vị trí các bít kiểm tra thêm vào chính là các bít có thứ lự thứ 2' 1 trong từ mã với 0 x, = Ì x2 © Ì © Ì = 0 -»x2 = 0 X, e Ì © Ì =0-»X| =0 Vậy từ mã để mã hoa 1001 là 0011001 6.3. Giải mã Khi nhận được một từ mã, ta lẩn lượt lấy từ mã nhân tương ứng với các véc tơ hàng cùa H. Nếu kết quả s là 000 thì không có sai khi truyền, ngược lại thì 91
  29. có sai, so sánh giá trị s với từng cột của H nếu trùng với CỘI j nào thì sai ờ vị trí thứ j. Do cách thiết lạp ma trận kiểm tra H của mã Hamming khá đặc biệt nên chỉ cần đổi s ra giá trị thập phân tương ứng thì giá trị thập phân này chính là vị trí bít sai. Ví dụ: khi nhận được dãy bít 001 loi Ì tiến hành giải mã bằng cách nhân tương ứng vói 3 hàng cùa ma trận H ở (4-23). Ì e Ì © Ì = Ì Ì © Ì © Ì = Ì ị to ì =0 Ì lo ứng với hàng thứ 6 cùa ma trận kiểm tra (hoặc đổi ra số thập phân cũng là 6), vậy bít bị sai là bít thứ 6, sửa sai bít thứ 6 từ Ì —>0. Từ mã đúng là 0011001, các bít mang tin là 1001. Bài tập Bài í: Cho nguồn tin rời rạc Xa có các lớp tin và xác suất xuất hiện tương ứng với chúng trong bảng sau: Lớp tin XI x2 Xa X, x5 Xí X, X, P(x,) 0,2 0,2 0,15 0,15 0,1 0,1 0,05 0,05 ai Hãy lập mã Shannon - Fano cho nguồn tin trên. bi Tinh các thông số tối ƯU của bộ mã c/ Biểu diễn bộ mã bằng đổ hình kết cấu Bài 2: Cho nguồn tin rời rạc X, có các lớp tin và xác suất xuất hiện tương ứng với chúng trong bàng sau: Lớp tin XI x2 x3 x4 x5 Xe x7 x» p(x,) 0,25 0,2 0,12 0,13 0,1 0,1 0,05 0,05 ai Hãy lặp mã Huffman cho nguồn tin trẽn. bi Tính các thông số tối ưu của bộ mã. cl Thử tính pretĩx của bộ mã khi nhặn được một chuỗi bít. Bài 3: Cho nguồn tin rời rạc X, có các lớp tin và xác suất xuất hiện tương ứng với chúng trong bàng sau; 92
  30. Lớp tin X, x2 x3 X. Xa "6 X, PM 0,01 0,34 0,23 0,1 0,19 0,07 0,06 ai Hãy lập mã Huffman cho nguồn tin trên. b/ Tinh các thông số tói ưu của bộ mã. c/ Biểu diễn bộ mã bằng cây mã. Bài 4: Hãy mã hoa chống nhiễu bằng mã vòng CỰA) sử đụng đa thức sinh g(x)= 1101 các tin sau: ai u,= 1011 bi u2= 1000 ờ u,= 1000 Bài S: Hãy giải mã bằng mã vòng C(7,4) sử dụng đa thức sinh g(x) = 1011 các tổ hợp ký hiệu nhận được sau: ai p,= 1000010 bi p2= 1001100 Bài 6: Với bộ mã Hamming C(7,4). Hãy mã hoa các tin ai u,= 1000 bi u2=0100 cl u3=0110 Bài 7: Với bộ mã Hamming C(7,4). Hãy giải mã thành tin tương ứng khi nhận được các tổ hạp mã sau: ai p, =11111100 bi p2= 1011011 Bài 8: Cho nguồn tin rời rạc Xu có các lớp tin và xác suất xuất hiện tương ứng với chúng trong bảng sau: Lớp tin X, *2 Xa X, x5 Xe X, X, m 0,2 0,18 0,15 0,14 0,12 0,09 0,08 0,04 ì. Nếu mã hóa nguồn tin trên bằng phương pháp Shannon- Fano thì tin x5 được mã hóa thành : a. 011 b. 010 c. 101 d. 110 e. 111 2. Nếu mã hóa nguồn tin trên bằng phương pháp Huffman thi tin X, được mã hóa thành: a.1001 b. 1101 c. 1011 d. 1111 e. 1000 93
  31. Bái 9; Cho mã vòng C(8,5) có đa thức sinh g(x) = 1 + x+ x2+x3 1. Tin u, = 10100 sẽ được mã hóa thành tử mã a. 01100110 b. 00110011 c. 100110011 d. 11101110 e.11001100 2. Tổ hợp nào sau đây không phải là một từ mã của mã vòng trên a.10100100 b. 10110100 c. 01011010 d. 10001000 e.10100101 Bài 10: Đa thức nào sau đây có thể làm đa thức sinh cho mã vòng C(9,6) ai XJ + 1 b/x3 + x2+1 cl X3 + X + 1 d/x3 + X2 + X +1 e/ Cả bốn câu trẽn đều sai 94
  32. Chương 5 ĐIỀU CHẾ TÍN HIỆU Mục tiêu - Giải thích được khái niệm và phân loại được cấc kỹ thuật điều chế. - Nêu được nguyên lý các kỹ thuật điều ché thông dụng. - Nhận biết các quá trinh điều chế và giải điều chế thông dụng. ì. KHÁI NIỆM VẾ ĐIỂU CHẾ 1. Định nghĩa Phần lớn các tín hiệu mang thông tin như hình ảnh, tiếng nói, đều là các tín hiệu tần số thấp và có phổ giới hạn từ fm đến fM với fm < fM. Ví dụ: - Tín hiệu tiếng nói có phổ từ 300 Hz đến 3400 Hz - Tín hiệu truyền hình có phổ từ 25 Hz đến 6,5 MHz Do đó ta không thể truyền trực tiếp các tín hiệu này đi xa bằng sóng điện từ vì chúng không thể bức xạ trực tiếp được bằng Ãngten. Trong khi đó các tín hiệu radio tần số cao lại có khả năng bức xạ tốt. Vì vậy cần phải dịch chuyển phổ cùa tín hiệu lên miền tần số cao. Quá trình này gọi là điều chế (Modulation). Ngoài ra để có thể tận dụng mạng điện thoại công cộng (Public Svvitched Telephone Network-PSTN) cho việc truyền số liệu giữa các máy tính ở những khoảng cách xa (ví dụ như liên lạc trong mạng Internet) thì cần phải chuyển đổi các tín hiệu điện đi ra từ các máy tính cho phù hợp với đường truyền PSTN. Bói vì đường truyền PSTN được thiết kế cho thông tin tiếng nói có băng thông trong khoảng 300 - 3400Hz, nếu các tín hiệu dạng số tần số cao được truyền 95
  33. trực tiếp trên đường dây thoại thì chúng sẽ bị suy giảm và biến dạng, khi đến đẩu thu sẽ không nhận ra được. Quá trình chuyển đổi này cũng được gọi là điều chế. Quá trình số hóa tín hiệu tương tự, quá trình chuyển từ tín hiệu điện sang tín hiệu quang đều là các quá trình điếu chế, chúng có nhiệm vụ là chuyển tin tức trong một dạng năng lượng thích hợp với môi trường truyền lan, trong đó dạng năng lượng được dùng ít bị tổn hao, biến dạng do tác động cùa nhiễu và có độ phân biệt rõ ràng để quá trình giải điều chế có thể dễ dàng nhận dạng dù có bị tạp nhiều làm biến dạng phẩn nào. Về mặt toán học để mô tả quá trình điều chế, ta sử dụng hai hàm: a/ Hàm tin s(t) bi Hàm tải tin u(t) Định nghĩa: Điều chế là quá trình cho hàm tin sịt) tác dộng lẽn tái tin nịt) sao cho nhận (lược một tín hiệu có phố nằm ờ miên lán số phù hợp với kênh truyền. Sau điều chế ta nhận được tín hiệu x(t), x(t) được gọi là tín hiệu điêu chế, s(t) được gọi là tín hiệu bị điều chế. 2. Phân loại Tuy theo tính chất cùa tải tin và tín hiệu mang tin ta có các loại điểu chế chính như sau: Điều chế cao tẩn các tín hiệu liên tục: Tín hiệu mang tin s(t) là tín hiệu tương tự, tần số thấp. Tải tin u(t) là một tín hiệu điều hòa tẩn số cao: u(t) = A„cos(io,i + q>0) = A„cos(27tf(l + (p„), với f0 đủ lớn (5-1) Ta có thể chia điều chế cao tần làm 3 loại chính: a/ Cho s(t) tác động vào biên độ của tải tin: điều biên (AM - Amplitude Modulation): A(t) = Ao + AA.s(t) (5-2) b/ Cho s(t) tác động vào tần số của tải tin: điều tần (FM- Frequency Modulation): Q)(t) = co,, + A(0.s(t) (5-3) 96
  34. c/ Cho s(t) tác động vào pha của tải tin: điều pha (PM- Phase Modulation: tp(t) = <p„ + A<p .sít) (5-4) Điều tần và điểu pha được gọi là điều chế góc vì bản chất của chúng đều làm thay đổi góc pha cùa tải tin. Điều chế xung: Tín hiệu mang tin s(t) là tín hiệu tương tự. Tải tin u(t) là một dãy xung tuần hoàn: H(0=ấ4I<'-*r.-'o) (5-5) Cho s(t) tác động vào các tham số của tải tin, ta có các loại điều chế xung sau: a/ Cho s(t) tác động vào biên độ của tải tin: điều biên xung (PAM - Pulse Amplitude Modulation) bi Cho s(t) tác động vào tần số của tải tin: điểu tần xung (PFM - Pulse Frequency Modulation). c/ Cho s(t) tác động vào pha của tải tin: điều pha xung (PPM - Pulse Phase Modulation d/ Cho s(t) tác động vào độ rộng của tải tin: điếu rộng xung (PWM - Pulse Width Modulation). e/ Khi lượng tử hóa và mã hóa tín hiệu điều biên xung, ta nhận được tín hiệu điểu xung mã (PCM - Pulse Code Modulation). Các phương pháp khoa dịch Tín hiệu mang tin s(t) là dãy bít nhị phân, tải tin u(t) là một dao động điều hoa: u(t) = A„cos(eo„ + cp()) Cho s(t) tác động vào các tham số biên độ, tần số, pha của tải tin, ta có các phương pháp điều chế khóa dịch sau: a/ Phương pháp điểu chế khoa dịch biên độ (ASK- Amplitude Shift Key) b/ Phương pháp khóa dịch tần số (FSK - Frequency Shift Key) c/ Phương pháp khóa dịch pha (PSK - Phase Shifl Key) 97
  35. dị Kết hợp giữa ASK và PSK ta có điều chế biên độ cẩu phương (Quadrature Amplitude Modulation - QAM) li. ĐIÊU CHẾ CAO TẨN CÁC TÍN HIỆU LIÊN TỤC 1. Tín hiệu điều chế góc 1.1. Tín hiệu điều chế góc Xái tín hiệu điều pha Độ lệch pha tức thời tỷ lệ với s(t): (p(t) = cp„ + Aip .s(t) (5-6) Biểu thức của tín hiệu điều pha là: xdp(t) = Ao cos6(t) = A„cos[ co„t+ A(p.s(t)+cp„] (5-7) Xét tín hiệu điều tần Tần số tức thời cùa tín hiệu tỷ lệ với s(t): co(t) = co,, + Ao) .s(t) (5-8) Biểu thức của tín hiệu điều tẩn là: Xj,(t) = Ao cos9(t)= A,,cos[jco(t)dt] = A„cos[(0„t+ Acojs(t)dt] (5-9) Xét trường hợp riêng s(t) = cosQ t, biểu thức cùa tín hiệu điều pha, điểu tần trở thành: X(lp(t) = A0cos[ w„t+ A<p. cosQ t +ọ0] (5-10) Ao • (5-11) xư, (í) = A0 cos mữt + ^Ẹ. sin Oi +ẹ ữ Nếu đổi gốc thời gian thích hợp, ta có biểu thức chung của tín hiệu điểu biên góc như sau: x(t) = Ao cos(co„t + p.siníìt) (5-12) trong đó p là chỉ tiêu điều biên góc, là độ lệch cực đại của pha so với giá trị trung bình. Đối với tín hiệu điều pha, ta có: Pdp = Aọ (5-13) Đối với tín hiệu điều tần, ta có: 98
  36. Pdt =ầm (5-14) 1.2. Thực hiện điều chế và giải điều chế góc 1.2.1. Điếu tấn Ta cẩn phải làm thay đổi tần số tức thời của một bộ tạo dao động hình sin theo hàm tin s(t) bằng cách sử dụng một bộ điều khiển bằng điện áp (VCO): Để thực hiện bộ tạo dao động này, người ta dùng bộ tạo dao động LC dùng diết biến dung. Phần thụ động cùa mạch tạo dao động này được thể hiện trong Hình 5-1 RFC c, x„,(t) • Sít) Ì Hình 5-1: Phần thụ động của mạch tạo dao động LC Trong mạch điện Hình 5-1, ta có: CU) = cv(t) +C, = [ cv„ - ACs(t)] +c, = (Qo+C,) - ACs(t) = q, - AQ(t) (5-15) Tần sô dao động tức thời cùa mạch tạo dao động LC này là: 1 I , ÁC , . <»(')= I = ĩ = l- — 3(t) V/.C(Í) -Jnca - ÁC.sự) Cn 99
  37. 1+-—jffl Ì ÁC (5-16) 2C„ m = + ị—MO = fit + AM') (ífo— «1) CO Vậy ta nhận được một tín hiệu điều tần. 1.2.2. Giải điều tần Có hai phương pháp giải điều tần đó là: giải điểu tần bằng mạch tách hình bao và giải điều tần đùng vòng khoa pha. Vòng khóa pha (PLL: Phase Locked Loop) là một hệ thống kín gồm 3 thành phần chính (Hình 5-2) gồm: một bộ phát hiện pha, một bộ lọc thông thấp và một bộ tạo dao động điều khiển bằng điện áp (Veo). x„,(t) SỌ) * Bộ phát hiện pha i Hít) veo Hình 5-2: Giải điểu tán dùng vòng khóa dịch pha Khi cho một tín hiệu điều tần qua một mạch vòng khoa pha, khi mạch khóa thì tín hiệu ra của bộ lọc thông thấp tỷ lệ với tín hiệu mang tin s(t). 1.2.3. Điêu pha Cho tín hiệu điều hòa tán số co,) qua một mạch cộng hưởng có dịch pha thay đổi được theo s(t) như trên Hình 5-3, ta sẽ nhận được tín hiệu điều pha cùa s(t). Các thông số cùa mạch tạo dao động này được xác định tương tự như (5- 15), (5-16) 100
  38. Bộ tạo dao động RFC xdn(t) seo ỉ /777 Hình 5-3: Phán thụ dộng của mạch lạo dao động Le Khi C(t) thay đổi theo s(t) thì tần số cộng hưởng của mạch cũng sẽ thay đổi: = ú> a>ci,0) » «0 +77^<v(') 0 + Aí«.í(/) (5-17) Do đó pha của điện áp ra cùa mạch cộng hưởng LC sẽ thay đổi theo s(t) do đặc tuyến pha của mạch cộng hưởng xung quanh (0„ xấp xi tuyến tính, vì lệch cộng hưởng nhỏ nên ta nhận được ở đầu ra cùa mạch tín hiệu điều pha theo s(t). 1.2.4. Giải điều pha Ta có thể khôi phục lại được s(t) từ tín hiệu điều pha bằng cách đưa tín hiệu điều pha qua một bộ giải điều tần như trên rồi lấy tích phân tín hiệu nhận được như Hình 5 - 4: x (t) sít) llp í di Giải diều tần —• Hình 5-4: Giải điều pha loi
  39. Mạch tích phân thường được thực hiện xấp xỉ bằng bộ lọc thông thấp tần số cắt fc có hàm truyền: Ì Hự)- (5-18) -í 2. Điểu biên Tín hiệu mang tin s(t) là thực, biên độ được chuẩn hóa sao cho ls(t)l < Ì và có phổ bị giới hạn trong khoảng 0 < fm< lfl < fM. Tín hiệu này có thể coi là tín hiệu dải hẹp có bề rộng phổ : B = fM-fm*fM (5-19) F0 là tần số của tải tin (hay sóng mang) u(t), ta giả thiết: Í0M = 2ĩtfM « 0)„= 27tF„ (5-20) Tải tin u(t) là một tín hiệu điều hòa tần số F„: u(t) = A0cos(co„t +ẹ 0) = A0cos(27iFot +<p„). (5-21) Nguyên lý của điều biên là biến đổi biên độ không đổi A„ của tải tin thành biên độ A(t) phụ thuộc vào s(t). Thực hiện điều biên u(t) Bộ khuếch đại điều x(t) = Gu(t) khiển băng điện áp v(t) = v„[l+ms(t)] Hình 5-5: Thực hiện điếu biên Ta sử đụng một bộ khuyếch đại điều khiển bằng điện áp G (Hình 5-5) Gvự) G=- (5-22) 102
  40. Khi ta đưa tải tin u(t) = Ucos(<B„t +ẹ „) vào đầu vào cùa bộ khuếch đại có điện áp điều khiển là: v(t) = v0[l+ms(t)] (5-23) thì ta nhận được ở đầu ra của bộ khuếch đại: x(t) = Gu(t) = G„[ Ì +ms(t)]Ucos(col)t + (p„) = A„[ Ì +ms(t)]cos(co„t + <p„) x(t) = A(t) cos(co„t +Ọ c) (5-24) Tín hiệu x(t) ở đẩu ra nhận được chính là tín hiệu điểu biên của s(t). Thực hiên giải điều biên: Cố hai phương pháp thông dụng để giải điều biên, dó là: tách hình bao và giải diều biên đổng bộ. Xét cụ thể phương pháp tách hình bao như sau: Một bộ tách hình bao lý tưởng là một mạch điện sinh ra một tín hiệuỏ đẩu ra tỷ lệ thuận với hình bao thực của tín hiệu vào. Tín hiệu vào là tín hiệu điều biên x(t): x(t) = A(t) cos(co„t + <p„) Tín hiệu ra y(t) của bộ lách hình bao lý tường là: y(t) = KA(t) (5-25) Mạch tách hình bao (Hình 5-6) là một diết D (giả thiết là lý tường) nối với một điện trờ R và tụ điện c. Điốt D mờ đối với phẩn dương của tín hiệu vào. Khi điện áp tăng, D mở tụ c được nạp tới giá trị đỉnh của x(t). Khi điện áp đầu vào giảm đi, D khóa, tụ c phóng điện qua R cho đến khi điện áp vào tăng tới giá trị làm cho D lại mờ. D Hình 5-6: Mạch điện lách hình bao 103
  41. Hằng số phóng: T = RC (5-26) Khi chọn X thích hợp: Ì Ì (5-27) _ « T « _ F, Ft Trong thực tế, ta chọn: Ị (5-28) Thì tín hiệu ra y(t) xấp xỉ là hình bao của tín hiệu vào s(t) với độ méo không đáng kể. Trái lại, nếu chọn T quá nhỏ hoặc T quá lớn thì tín hiệu ra của mạch điện tách hình bao sẽ bị méo lớn. HI. ĐIỂU CHẾ XUNG Thoạt đầu, để truyền tiếng nói trong các mạng viển thòng, người ta chi dựa trên kỹ thuật truyền tương tự, nhưng trong những khoảng cách xa, độ rõ cùa tiếng nói có thể kém. Do bị suy hao và bị nhiễu rất có thể sẽ khó hiểu hoặc không nhận ra người kia đang nói gì. Do vậy các tín hiệu lương tự được khuếch đại tại những khoảng cách nhất định, tuy nhiên độ nhiễu cũng được khuếch đại và mỗi tầng khuếch đại sau khi nối mạch đều làm tích tụ nhiễu. Để cải thiện các chất lượng truyền dẫn người ta sử dụng các phương pháp điều chế tín hiệu xung (còn gọi là số hóa) đê* chuyển đổi từ tín hiệu tiếng nói (liên tục) sang tín hiệu dạng số và ờ đẩu nhận cần phải giải điêu chế một lần nữa thành âm thanh. Ở đây có sự khác nhau quan trọng giữa các đặc tính của hai phương pháp truyền dẫn này là trong các hệ thống chuyển mạch số, thông tin được tái tạo và được phát đi hoàn toàn không bị nhiễu. Việc khảo sát các phương pháp điều chế ra tín hiệu số nhằm xác định phương pháp tốt nhất cho mọi loại môi trường truyền là điểu hết sức quan trọng. Chúng ta sẽ cụ thể kỹ thuật số hoa như sau: Tải tin u(t) là một dãy xung vuông tuần hoàn chu kỳ Ts choỏ công thức (5- 5) như trên Hình 5-7. 104
  42. u(t) Hình 5-7: Tái tin của tin hiệu điều biên xung Tải tin u(t) có bốn tham số: - Biên độ A - Tẩn số F=-zr - Thời điểm xuất hiện cùa xung thứ k: tt = t() + kTN (5-29) - Độ rộng xung: X Cho hàm tin s(t) tác động vào từng tham số trên, ta nhận được bốn loại điều biên xung tương ứng: điểu biên xung (PAM), điều pha xung (PPM), điều tần xung (PFM), điểu rộng xung (PWM) Tín hiệu điều biên xung sẽ có dạng tổng quát: * JI(,-*7'« -'^ (5-30) *=» ù Các tham số biên độ Ai, độ rộng Tk, chu kỳ Tsk, thời điểm xuất hiện xung tin phụ thuộc vào t, tương ứng với điều biên xung (PAM), điều rộng xung (PWM), điều tần xung (PFM), điểu pha xung (PPM). 1. Điều biên xung (PAM) Tín hiệu điều biên xung là tín hiệu có biên độ mang tin (Hình 5-8) tuân theo quy luật sau: Ak = s(kTJ (5-31) 105
  43. s(t) u(t) liMầiựLŨ t Xdbx(t) in khi T, 2T, 3T, Hình 5 - 8: Tin hiệu điều biên xung Thực hiện diều biên xung là lấy mẫu tín hiệu s(t) dựa trẽn định luật lấy mẫu cùa Shannon, thay thế nó bằng một hàm rời rạc là những mẫu cùa hàm trên lấy ra tại những thời điểm gián đoạn. Nêu tẩn số lấy mẫu > 2 lần tần số cao nhất của tín hiệu^,; thì phép lấy mẫu bảo toàn thông tin của tín hiệu. Ví dụ tiêng nói có tần số lớn nhất là 4300Hz thì cần lấy mẫu với tẩn số nhỏ nhất là 8600HZ. Hình 5-9 trình bày lược đồ tổng quát sự lấy mẫu. Xung lấy mỉu Tín hiêu mang tin s(t) Mách lấy TínhiêuPAM xít) (tương tự) mâu (dãy xung rời rạc) Hình 5-9: Điên biên xung 106
  44. Tín hiệu mang tin s(t) được đưa đến đẩu vào của mạch lấy mẫu. Xung lấy mẫu u(t) là một dãy xung vuông luẩn hoàn chu kỳ Ts. Đẩu ra là tín hiệu điều biên xung x(t) là một dãy xung mà biên độ mỗi xung bằng với biên độ của tín hiệu tương tự gốc tại thời điểm lấy mẫu. Các xung này được tạo ra có tần số/s đảm bào định luật lấy mẫu. Do đó, ta có thể khôi phục (quá trình giải điểu biên) lại chính xác tín hiệu s(t) từ tín hiệu điều biên xung nếu tín hiệu s(t) được lấy mẫu ở tẩn số/, Điều biên xung(PAM) vẫn chưa phải là quá trình số hoa vì dạng điều chế này lấy xung có bề rộng cố định nhưng có chiều cao thay đổi theo tín hiệu điều chế. Điều chế biên độ xung rất nhạy cảm với nhiêu nhiệt và nhiễu xuyên âm, nhiễu sẽ tác dộng lên đỉnh xung và hình thành tạp ăm trên kênh khi giải điểu chế. 2. Điều pha xung (PPM) Tín hiệu điều pha xung là tín hiệu có pha (hay thời điểm xuất hiện của xung) mang tin tuân theo quy luật sau: ^=t0+ỀTj(kự) (5-32) Ta có thể thực hiện điều pha xung bằng mạch điện như trên hình 5-10. So sánh c Đa hài đợi có Ì Xdpx(Ọ pg trạng thái ổn định » Hình 5-10: Mạch điều pha xung Đầu vào A là tín hiệu VA, đó là xung răng cưa luẩn hoàn chu kỳ T„. Đầu vào B là tín hiệu : VB= V[l+a.s(t)] (5-33) Dạng tín hiệu trong mạch được trình bày ở hình 5-11 107
  45. T, 2T. 31', 4T. 5TJ 6T. 7T ì Ũ n nn Xdp,(t) Ạ hũ h h n h h Hình 5-11: Tin hiệu điều pha xung Tín hiệu đầu vào ở A được so sánh với tín hiệu đầu vào ở B, cho thấy một dãy xung vuông có thời điểm xuất hiện xung mang tin nhưng có độ rộng xung khác vc. Nếu ta cho tín hiệu ở c đi qua một đa hài đợi một trạng thái ổn định (độ rộng xung x) thì sẽ nhận được một tín hiệu điều pha xung Pha của xung được xác định một cách rõ ràng như sau: Xét trong một chu kỳ: VA = V„.At (5-34) mà VA = VB tại thời điểm mạch so sánh chuyên trạng thái, do đó: V„.At = V[l +a.s(t)] (5-35) v_ a.v -K, =&,. = (5-36) kĩ aV (5-37) Đây là tín hiệu điểu pha xung. 108
  46. 3. Điều rộng xung (PWM) Tín hiệu điều rộng xung là tín hiệu có độ rộng xung mang tin tuân theo quy luật: Tk = T +Aĩ.s(kTJ (5-38) Trong dạng điểu chế này, giữ biên độ xung cố định, nhưng bề rộng xung thay đổi. Cạnh của xung dịch theo tín hiệu mang tin làm bề rộng xung thay đổi theo. Khi nhiễu làm thay đổi biên độ xung sẽ không ảnh hưởng đến tín hiệu gốc vì biên độ xung không mang thông tin nào. Tuy vạy, nhiễu cũng làm xáo trộn cạnh của xung bởi hiện tượng méo dạng khi truyền. Có 3 cách điều rộng xung: Giữ nguyên sườn trước, thay đổi sườn sau Giữ nguyên sườn sau, thay đổi sườn trước Giữ nguyên điểm giữa, thay đổi độ rộng Ta xét cách thứ nhất là giữ nguyên sườn trước, thay đổi sườn sau. Mạch điện thực hiện điều rộng xung như Hình 5-12 A Xdrx(t) So sánh B ì -• Hình 5-12: Mạch điều rộng xung Đẩu vào A là tín hiệu VA = s(t) Đầu vào B (V„) là tín hiệu răng cưa tuần hoàn chu kỳ Ts. V là điện áp tham chiếu Dạng tín hiệu trong mạch điều rộng xung như hình 5-13 109
  47. Hình 5-1 ỉ: Dạng tín hiệu trong mạch điểu rộng xung Tín hiệu ở điểm c là tổng hai tín hiệu VA, VB, nó được so sánh với tín hiệu Vr, cho ta ờ đẩu ra một dãy xung vuông có độ rộng xung mang tin. Độ rộng xung được xác định cụ thể như sau: Tại thời điểm mạch so sánh chuyển trạng thái, ta có : VA + VB = VC = V, (5-39) -> V0At +s(t) = vr (5-40) Át = — = — s(l) (5-41) V V T -Ai, T,-ỷ\ + ỷs(kT,) (5-42) Đây là tín hiệu điều pha xung. Đối với hai cách còn lại, mạch điện vẫn như trên tuy nhiên chỉ thay đổi tín no
  48. hiệu VB là tín hiệu xung răng cưa tuần hoàn chu kỳ T dốc sườn sau hoặc dốc cả hai một cách tương ứng. 4. Điều tần xung (PFM) Tín hiệu điều tẩn xung là tín hiệu có tần số mang tin. ±=Ấ+AFjạTs) (5-43) Phương pháp điều chế này được xem như tương đương với điều rộng xung. Dạng tín hiệu điều tần xung được thể hiện trong Hình 5-14 sít) Hình 5-14: Tín hiệu điều tần xung 5. Điều xung mã (PCM) Điểu xung mã là quá trình biến đổi tương tự - số, trong đó thông tin chứa trong các mẫu tín hiệu của tín hiệu tương tự được biếu diên dưới dạng nhị phân (một dãy bít). Xung lấy mẫu s(t) Mạch lấy Tín hiệu điều biên Lượng tử hoa Tín hiẽu dươ<^ mẫu (PAM) số hóa (CM) Hình 5-15: Lược đồ hóa PCM IU
  49. Bước 1: lấy mẫu tín hiệu s(t) (điều biên xung PAM), với chu kỳ lấy mẫu T„ ta nhận được các máu sk. Bước 2: Lượng lử hóa sk với bước lượng từ hóa A , làm tròn các giá trị biên độ các mẫu tín hiệu tới số nguyên gần nhất. ,khis„ >0 i+ 0,5 í A , khist < 0 ^ 0,5 í A Bước 3: Mã hóa giá trị nguyên của các mẫu nk dưới dạng nhị phân (dùng mã bù 2 hoặc mã gray), giả thiết mã hóa một mẫu b bít (b được chọn sao cho là tối thiểu), ta nhận được một tín hiệu số là một dãy bít. Tín hiệu tương tự lu Lấy mẫu r Lượng tử hóa * Tín hiệu PCM OyyOũtìii- 11 00 11 01 • 0 to OI e i|ot I I I I I 0 Hình 5-16: Dạng tín hiệu PCM 112
  50. IV. ĐIỂU CHÊ KHÓA DỊCH Khi muốn truyền số liệu giữa các máy tính trên các PSTN (mạng điện thoại công cộng) có sẵn, cần chuyển đổi các tín hiệu đi ra từ các máy tính sang dạng phù hợp với PSTN. Đường truyền PSTN được thiết kế cho thông tin tiếng nói có băng thông trong khoảng 300-3400 Hz. Chính vì lý do này không thể đặt hai Public TelciỊhone Nelwork mức điện áp từ DTE trực tiếp lên đường dây. Vì vậy, dữ liệu nhị phân cần được chuyển đổi sang dạng tương thích với tín hiệu điện thoại tại DTE phát và chuyển dổi ngược lại thành dạng nhị phân tại đầu thu. Đối với truyền hình cáp CATV cũng vậy, tín hiệu số từ các trung tâm truyền hỉnh cáp sẽ được chuyển đổi thành tín hiệu tương tự tẩn số vô tuyến để ghép kênh trên các cáp đổng trục và đến máy thu hình của các thuê bao. Mạch điện thực hiện hoạt động chuyển đổi từ tín hiệu băng gốc số sang tín hiệu liên tục (hình sin) bâng tẩn thích hợp gọi là bộ điều chế (Modulator), và mạch điện thực hiện hoạt động chuyển đổi ngược lại được gọi là bộ giải điều chế (demodulator). Vì mỗi liên kết đều cần cả hai đầu mạch, chúng kết hợp lại thành một thiết bị chung gọi là Modem. Để thực hiện điều chế, ta phải thay đổi biên độ, tần số và pha của tín hiệu sóng mang hình sin theo sự biến đổi cùa dữ liệu nhị phân cần truyền. Dữ liệu nhị phân được truyền chi yêu cầu hai mức tín hiệu, sự chuyển mạch tín hiệu giữa hai mức mang ý nghĩa khóa (key) vì vậy ba loại điều chế trên được gọi là điều chế khóa dịch biên độ (ASK), khoa dịch tần số (FSK) và khoa dịch pha (PSK). Ngoài ra hiện nay người ta còn kết hợp ASK với PSK gọi là điều chế AQM. 1 Điều chế khóa dịch biên độ (Amplitude Shift Keying - ASK) Nguyên lý hoạt động cơ bản cùa ASK được minh hoa trong hình 5-17 và dạng sóng đơn giản ở hình 5- 18. 113
  51. V (t) Bộ điều chế ASK Bộ giãi diêu chế v (t). Lọc Lọc thông Vd(t) d băng gốc PSTN )—• thấp (tín hiệu dữ; vạt) vc(t) •Tín hiệu sóng mang v„(t) Hình 5-17: Lược đồ mạch í. 1 1 1 dữ liệu 0 1 OI lo 1 u ^AAAAAJA AAAAAA/^ sóng mang vvvvvv vVVVVVV - M vvvv—vv. « • năng lượng tín hiệu fc-3f0 fc+f fc fc-fo f>3fo f(, = thành phẩn tần số cơ bản = 1/2 tốc độ bít Hình 5-18: Dạng sóng và băng thông 114
  52. Nguyên lý của ASK là biên độ của sóng âm đơn tần được chuyển đổi giữa hai mức với tốc độ được xác định bởi tốc độ bít cùa tín hiệu nhị phân được tr™"' Sóng âm tần hay còn gọi là sóng mang có tần SÔ thu*c bâng thÔng PSTN. Kích thước băng thông yêu cầu được xác định bời tốc độ của tín hiệu, tóc độ càng cao thì kích thước băng thông yêu cầu càng lớn. Trong thực tế các phương pháp điều chế khác nhau đòi hỏi độ rộng băng thông khác nhau, nên việc đánh giá mức băng thông yêu cầu ứng với mỗi phương pháp là rất cân thiết. Về mặt toán học, hoạt động điều chế ASK, PSK, FSK tương đương với việc nhân tín hiệu sóng mang với tín hiệu dữ liệu nhị phán. Sóng mang có tần số riêng co.t và biên độ không dổi biểu diễn dưới dạng biểu thức điện áp MO = cosaự; (Bc: radian/second (5-44) Một tín hiệu số mang tin tuần hoàn đơn cực với biên độ không đổi và tẩn số cơ bản co0 được khai triển theo chuỗi íourier như sau: sd(t) = 1/2 +2/ TI (costcv - 1/3 cost3co„t +1/5 cost5co„t - ) (5-45) Suy ra ASK có thể biểu diễn : UASK(0 = uc(t) X s„(t) (5-46) Do đó: uASK(t) = 1/2. cosoự +2/ 71 .(costũự. cosũự - 1/3. cosciự. cost3d)„t+ ) Suy ra: UASK = 1/2 cosoự +1/71 [cos(ov to0)t +COS((C0+GJ„)c t - 1/3 cos(co-t 3co0)t -1/3 cos(coc+3co„)t+ ] (5-47) Chúng ta thấy tín hiệu ASK tương đương với tín hiệu số liệu nguồn chuyển đích sang dạng tần số cua sóng mang, bên cạnh đó còn có hai thành phần tần số cơ bản ((» • - co,,) và ((coc + co,,) và hai thành phần hài bậc cao ((co,. - 3to„) và ((to +3(0 ) Tất cà hình thành nên biên tẩn cơ bản, đo đó băng thông cùa ASK được trình bày trên hình 5-18 Băng thông càng lớn thì tín hiệu thu càng trung thực. Tuy nhiên, hiệu quà h t đông có 'hể đạt được nếu băng thông cùa kênh đủ chỗ để cho thành phần T " cơ bản của dòng dữ liệu 101010 vì băng thông yêu cẩu trong các dòng j- ] êu có thứ tự khác đều nhỏ hơn. Gọi f0 là tần số cơ bản của tín hiệu dữ liệu 115
  53. theo tuần tự 101010 f„ bằng nữa tốc độ bít (bps), suy ra băng thông tối thiếu cùa ASK bằng với tốc độ bít tính sang đơn vị Hz, 2f„ hoặc để thu được thành phần hài bậc 3 thì phải gấp ba lẩn tốc độ bít tính sang Hz, 6 f„. Từ hình 5-18 ta có thể thấy rằng đối với ASK tín hiệu sóng mang hiện diện trong tín hiệu thu ngay cả khi không có tín hiệu thông tin f|„ 3f(„ trong đó. Từ công thức Nyquist, suy ra với tín hiệu nhị phân thì tốc độ số liệu tối đa đạt được bằng hai lần băng thông. Vì thế, giả sử: Việc khôi phục lại tín hiệu số liệu được thực hiện bời mạch giải điểu chế. Tại đây tín hiệu thu lại được nhân một lần nữa với sóng mang cùng dạng. Từ đó sinh ra hai phiên bản cùa tín hiệu thu: thành phần bao quanh tần số 2fc(fc + fc) và thành phần bao quanh zero(fc- fc). cả hai phiên bản đều chứa thông tin trong hai biên tẩn, nhưng thành phần sau cùng được chọn bằng cách cho đi qua bộ lọc thông thấp. Bộ lọc thông này được thiết kế để chỉ cho các tần số từ 0 đến f„ hoặc nếu hài bậc 3 nhận được thì từ 0 đến 3f(). Do vậyỏ đầu ra của bộ lọc chính là phiên bản của tín hiệu dữ liệu truyền bị giới hạn băng tần. Mặc dù ASK là phương pháp thực hiện đơn giản, dễ bị ảnh hường bời nhiễu, khó đồng bộ và thường dùng trong cáp quang. Gần đây tất cả các hệ thống truyền dẫn và chuyển mạch đều được thực hiện bởi kỹ thuật số và ASK có cơ hội tham gia và thường được dùng kết hợp với PSK để thiết kế các Modem tốc cao. 2. Phường pháp diều chế khoá dịch tẩn số {Frequency Shitt Keying FSK) FSK là phương pháp điều chế được dùng trong tất cả các Modem tốc độ thấp thế hệ đầu. Nguyên lý hoạt động cơ bản được minh họa trong hình 5-19. Để tránh vấn đề thay đổi biên độ, với FSK dùng hai tín hiệu sóng mang phân biệt tẩn số nhưng có cùng biên độ và cố định, một cho bít nhị phân '0' , một cho bít nhị phân ' Ì'. 116
  54. dữ liệu 0 I 0- sóng mang Ì'\AAAAAAA/WVW V sóng mang 2 f,-3f0 f,-f„ f,+f„ f,+3f„ f;-3f„ f,-f„ f,+f„ F+3f2 „ Hình 5-19: Tín hiệu điều chê'FSK và băng thông Nguyên lý cùa FSK là hai giá trị nhị phân được biểu diễn bởi hai tín hiệu tần số khác nhau. Hoạt động điều chế tương đương với sự tổng hợp các ngõ ra của hai bộ điều chế ASK riêng biệt: mội thực hiện trên sóng mang thứ nhất dùng phần gốc của tín hiệu dữ liệu (mức cao) và một thực hiện sóng mang thứ hai dùng phần bù của tín hiệu dữ liệu (mức 0). Về mặt toán học, có thể biểu diễn tín hiệu FSK như sau: Hai sóng mang có tẩn số riêng (0,và co2, biên độ không đổi biểu diễn dưới dạng biểu thức điện áp. 117
  55. u,(t) = cos(B|t; co, : radian/second u2(t) = cos(02t; co2: radian/second Một tín hiệu số mang tin tuần hoàn đem cực với biên độ không đổi và tẩn số cơ bản co0 được khai triển theo chuôi íburier như sau: sd(t) = 1/2 +2/ TI (cost(0,|t - 1/3 cost3co„t +1/5 cost5co„t - ) I»FSK(«) = Cos co,t. sd(t) + Cos co2t. s'd(t) (5-48) Trong đó s'd(t) là phẩn bù của tín hiệu dữ liệu gốc Sj(t). Do đó: V|=SK (t) = 1/2 cosco,t + l/n [cos(a)| - co0)t +cos(((0, +C0|))t - 1/3 cos(cor 3(0(1)| -1/3 cos( 2 +co„)t - 1/3 cos(co2- 3co0)t -1/3 cos( bằng một nửa so vói ASK. Do đó nếu giả sử chỉ thu được thành phẩn tần số cơ bản thì băng thông tổng cộng bằng 4f0 cộng với khoảng dịch tẩn fs. Tuy nhiên vì f0 bằng một nửa so với ASK nên băng thông tổng bằng vói băng thông tổng cho ASK cộng với khoảng dịch tần. Tương tự nếu cặp hài bậc 3 được thu thì băng thông bằng 6f0 cộng vói khoảng dịch tần. Kỹ thuật FSK có tỷ suất lỗi thấp hơn ASK, thường dùng trong truyền số liệu qua đường điện thoại (tần số thấp), hoặc trong mạng không dây (tần số cao). 3. Phương pháp điều chế khoá dịch pha (Phase Shitt Keying - PSK) Nguyên lý của PSK là tần số và biên độ của sóng mang được giữ không đổi trong khi pha của nó được dịch theo mỗi bít của dòng dữ liệu truyền. Xét loại PSK thứ nhất dùng hai tín hiệu sóng mang có định đại diện cho bít 0 và Ì, hai sóng mang khác pha nhau 180". Vì tín hiệu này chì là nghịch đảo của tín hiệu kia nên loại này được gọi là phase coherent PSK (PSK phối hợp pha) còn được gọi là 2-PSK. 118
  56. dữ liệu 0 -Ì sóng mang "'.•SK(0 Coherent Hình 5-20 a: Tín hiệu 2-PSK Hình 5-20b: Sơ đồ pha 2-PSK Ở đây, tín hiệu băng gốc s(t) là xung NRZ lưỡng cực nhận n=2 giá trị như ở hình 5-20a, nên dạng sóng đã điều chế có dạng giống như ASK đảo pha, một symbol của tín hiệu điều chế mang thông tin của Ì bít. 119
  57. Điều bất tiện của loại này là tại máy thu đòi hỏi phải có sóng mang tham chiếu để so pha với tín hiệu thu, do đó cần thực hiện đồng bộ pha giữa máy thu và máy phát. Kết quả là dẫn đến mạch giải điều chế phức tạp hem. Loại PSK thứ hai ta xét tới là PSK vi phân (diíerential PSK) còn được gọi là 4-PSK. Tín hiệu băng gốc là một xung NRZ lưỡng cực nhận n = 4 giá trị, (hì một dạng sóng đã điều chế như hình 5-21 sau: Sử) 3 Ì 1 I 1 I 0 Ị—Ị- —Ị—- -Ì I I -3 I 1 I Hình 5-2ỉa: Tin hiệu 4-PSK rị J Hình 5-2Ib : Sơ đồ pha 4-PSK 120
  58. Với loại này sự dịch pha xảy ra tại mỗi bít không cần quan tâm tới chuỗi bít 0 hay bít Ì đang được truyền. Một sự địch pha 90" tương ứng với tín hiệu hiện hành chỉ định 0 là bít kế tiếp trong khi sự dịch pha 270" chi bít 1. Như vậy mạch giải điều chế chỉ cần xác định độ lớn của sự dịch pha thay vì phải xác định giá trị tuyệt đối cùa từng pha. Ở mạch điều chế chỉ khi nào thay đổi trạng thái của dữ liệu mới đổi pha cùa sóng mang. Hình 5-21 b biểu diễn sơ đổ pha tín hiệu 4-PSK. Giống như 2-PSK, nếu tín hiệu băng gốc không bị giới hạn băng thông, thì tín hiệu 4-PSK cũng dịch chuyển tức thời trên vòng tròn đơn vị. Về mặt toán học; ta có thể xác định băng thông PSK. Ở đáy chúng ta trình bày tín hiệu số nhị phân dưới dạng lưỡng cực vì mức tín hiệu âm sẽ là kết quả đổi pha 180" của sóng mang. Sóng mang có tần số riêng co.t và biên độ không đổi biểu diễn dưới dạng biểu thức điện áp: UẬÍỊ = coscoct; cot: radian/second Một tín hiệu số mang tin tuần hoàn đơn cực với biên độ tổng hợp và tần số cơ bản co„ được khai triển toán học theo chuỗi íourier như sau: sd(t) = 4/71 [costro„t - l/3.cost3(0„t + l/5.cost5(0„t - ] (5-49) Suy ra: ureK = 4/n.[cost(0ct costco„t - l/3.costcoct.cost3(o„t +l/5.costcoct cost5co„t - ] = 2/jt.[cost(cot-co0)t+ cost(co+co„)t t - l/3.cos(cot-3to„) - l/3.cost(cot+3oo„)t+ ] (5-50) Từ công thức trên ta thấy phổ tẩn số PSK giống như ASK chì khác là không có thành phần sóng mang. Do đó, băng thông của tín hiệu PSK sẽ được thể hiện như ờ hình 5-22. Giả sử chỉ thành phẩn tẩn số cơ bản của dãy loi 100 được nhận thì băng thông tối thiểu bằng 2f|„ bằng giá trị tốc độ bít. Tuy nhiên, do vắng mặt thành phần sóng mang nên có nhiều năng lượng trong biên tẩn đơn (data) điều đó giúp PSK kháng nhiều tốt hơn ASK hay FSK. Giới hạn băng của tín hiệu từ fc đến fc+f„, có nghĩa là băng thông bằng f„ và đạt được tốc độ Nyquist. Hầu hết năng lượng nhận được thuộc về tín hiệu mang thông tin, fc+f„ (do không có Q. 121
  59. -6tr năng lượng j«-2f,i->Ị tín hiệu ft.-3f„ fc+f„ f. fc-f„ fc+3f0 Hình 5-22: Băng thông PSK Bên cạch 2-PSK và 4-PSK, còn có PSK nhiêu pha. Hình 5-23 đưa ra các sơ đồ pha đối với 8-PSK và 16-PSK. (a) 8PSK (b) 16PSK Hình 5-23: PSK nhiều pha Ngày nay các thiết bị truyền dẫn và chuyển mạch kỹ thuật số đã và đan" được dùng trong mạng PSTN hiện đại. Kết quả ứng dụng đó, tạo diều kiện đạt được tốc độ bít vượt xa tốc độ có được theo các phương pháp điều chế cơ bản kể trên nhờ sử dụng các phương pháp điều chế phức tạp hơn. Trong các phươno 122
  60. pháp nhằm gia tăng tốc độ, tổn tại hai khuynh hướng: hoặc nhiều mức tín hiệu hoặc trộn lẫn các phương pháp điểu chế cơ bản, đặc biệt là ASK và PSK. Loại điều chế kết hợp giữa ASK và PSK gọi là biên độ cẩu phương QAM. 4. Điểu chế biên độ cầu phương (Quadrature Amplitude Modulation-QAM) 4.1. Biểu diễn tín hiệu cầu phương Trước khi miêu tả điều chế biên độ cầu phương, chúng ta hãy xét biểu diễn cầu phương của các tín hiệu. Một tín hiệu hình sin cos((0(,t + G) có pha xác định được trình bày bằng định lý cộng của hàm lượng giác như sau: cos(co„t + 8) = cos6.cosco0t - sin9.sinco,)t Trong biểu thức này, C0S(B(,t và sin(0„t là các tín hiệu hàm sin có hiệu số pha là 90" và cắt nhau vuông góc trong biểu đồ pha. CosG và tương ứng sin9 là các hệ số của chúng có thể biểu diễn tất cả các điểm tín hiệu của sóng điều chế nhiều mức bằng cách chọn thích hợp các hệ số này. 4.2. Biểu diễn điều pha QAM Bây giờ ta xét biểu diên cẩu phương của 4-PSK. 4-PSK có thể được coi là trường hợp riêng của điều chế QAM trong đó sự thay đổi về biên độ cùa sóng mang bàng 0. Sóng 4-PSK E(t) có thể được biểu diễn là tổng cùa hai tín hiệu hình sin vuông góc với nhau như sau: E(t) = e,(t) + e2(t) = {S,(t). cosco„t + £,(0. sino)„t)/V2 Bảng dưới đây cho thấy hai tín hiệu băng gốc S|(t), s,(t) và các tín hiệu tổng lạo thành từ chúng. 123
  61. Tín hiệu tổng hợp s,(t) Ui) e,(t) e (t) 2 EO) 1 1 1 -1 COs(CDt + — ) ^cosoự - sin»ct t 4 1 3n . -1 -1 .^sinaụ •ã cos(coct + — ) 4 ì ì -1 1 cosíco.t + —) -^coscoct /=sinco t 4 1 1 1 1 cosíco. t + — ) ^cosoự Anfùỉ -4ĩ 4 fíả/jg 5-24: Bâ;iẶ' íw/u í/iê/1 /nít giao 4-PSK Những tín hiệu này được mô tả trong hình 5.24a: Ị
  62. Nếu e,(t) và e2(t) là các sóng điều biên có hai giá trị thì có thể kết hợp chúng đe tạo thành các sóng điều chế có 4 điểm tín hiệu. Vì quỹ tích véctơ cùa các tín hiệu bị giới hạn băng thông không dịch chuyển trên đường tròn đơn vị nên các sóng thu được khác với tín hiệu 4-PSK chuẩn. Tuy nhiên vì chúng có cùng một biên độ cố định tại thời điểm tách sóng nên có thể coi chúng như là PSK. Tín hiệu nhận được bằng cách kết hợp hai sóng điều biên (AM) vuông góc với nhau được gọi là sóng điều chế biên độ cầu phương (QAM). Sóng QAM có hai ưu điểm, nó có thể biển diễn được từ hai tín hiệu điều chế biên độ cơ sờ và có thể chọn một điểm bất kỳ trên biếu đồ không gian tín hiệu như là một điểm tín hiệu. 4.3.Ọ A M nhiều trạng thái QAM cho phép sắp xếp ngẫu nhiên các điểm tín hiệu cũng như dễ dàng thực hiện điều chế và giải điều chế tín hiệu nhờ tính chất cầu phương của các tín hiệu. Ngoài ra, cách sấp xếp hình chữ nhật thường được sử dụng khi thuộc tính C/N đòi hỏi khá cao. Hình 5-24b cho thấy cách sắp xếp các điểm tín hiệu đối với điều chế biên độ cầu phương 16 mức (16 QAM). QAM nhiều trạng thái có thể được tạo thành bởi hai tín hiệu điểu chế biên độ trực giao có n mức, vì vậy có 2" điểm tín hiệu. Khi n=2 thì QAM giống hệt cách sắp xếp tín hiệu của 4-PSK. Khi n=4 thì điều chế là 16-QAM, khi n=8 hoặc 16 thì điều chế tương ứng là 64-QAM hoặc 256-QAM. Câu hỏi ôn tập V Định nghĩa và nêu nhiệm vụ của điều chế 71 Phân loại các kỹ thuật điểu chế 3/ Nêu bản chất của các kỹ thuật điều chế cao tẩn 4/ Nêu bản chất của các kỹ thuật điều chế xung 5/ Nêu bản chất cùa các kỹ thuật điều chế khóa dịch 6/ Nguyên lý điều chế FSK ? li Nguyên lý điều chế PSK ? 8/ Nguyên lý điều chế ASK ? 9/ Nguyên lý điều chế QAM ? 125
  63. CÁC THUẬT NGỮ VÀ Từ VIẾT TẮT TIẾNG ANH Amplitude Modulation - AM Điểu chế biên độ Amplitude Shiít Key- ASK Điều chế khóa dịch biên độ Carrier Vật mang tin Channel Kênh tin Communication Truyền tin Continuous channel Kênh liên tục Continuous iníormation Tin liên tục Continuous source Nguồn liên tục Data Số liệu, dữ liệu DeModualalion Giải điều chế Diferential PSK PSK vi phân Discrete channel Kênh rời rạc Discrete iníbrmation Tin rời rạc Discrete source Nguồn rời rạc Elementary evenl Sự kiện cơ bàn Encoding Mã hóa Event Sự kiện Frequency Modulation - FM điều chế lần số Frequency Shift Key- FSK điểu chế khóa dịch lần số Iníormation source Nguồn tin Information Thông tin Measure oi iníormation lượng đo thông tin, lượng tin Modulation Điều chế News, Nouvelles Tin lức Noise Tạp nhiêu Phase coherenl PSK PSK phối hợp pha 126
  64. Phase Locked Loop - PLL Vòng khóa pha Phase Modulation - PM điều chế góc pha Phase Shift Key - PSK điều chế khóa dịch pha Prefix tiếp đầu ngữ, phần đáu Public Switched Telephone Network-PSTN : mạng điện thoại công cộng Pulse Amplitude Modulation - PAM : điều chế biên độ xung Pulse Code Modulation - PCM : :đi ều chế mã xung Pulse Frequency Modulation - PFM : điểu chế tần số xung Pulse Phase Mođulation - PPM: :đi ều chế góc pha xung Pulse Width Modulation - PWM: điều chế độ rộng xung Quađrature Amplitudc Modulation - QAM điều chế biên độ cầu phương Sample space Không gian mẫu Sensor Cảm biến Signal Tín hiệu Sink Thu tin Telecommunication Hệ thống viễn thông ưniquely decodable code Mã phân tách được Uniquely undecodable code Mã không phân tách được
  65. TÀI LIỆU THAM KHẢO 1. Cơ sở lý thuyết truyền tín. Tác giả Bùi Minh Tiêu. Nhà xuất bản Đại học, 1985 2. Lý thuyết mã. Tác giả Nguyên Thúy Vân. Nhà xuất bản Khoa học kỹ thuật, 1999 3. Cơ sở lý thuyết truyền tin. Tác giả Hà Quốc Trung. Giáo trình điện từ - Khoa Điện tử viên thông - Đại học Bách khoa Hà Nội 4. Cơ sở lý thuyết truyền tin (2 tập). Tác giả Đặng Văn Chuyết và Nguyễn Tuấn Anh. Nhà xuất bản Giáo dục 2000 5. Kỹ thuật truyền số liệu. Tác già Nguyễn Hổng Sem và Hoàng Đức Hải. Nhà xuất bản Lao động - Xã hội, 2002 6. Lý thuyết truyền tin . Tác già Trần Trung Dũng và Nguyền Thúy Anh. Nhà xuất bản Khoa học và kỹ thuật, 2001 7. Giáo trình Xác suôi thống kê . Tác giả Tống Đình Quỳ. Nhà xuất bản Giáo dục, 1999. 8. Digital Communication. John G. Proakis, McGraw - Hin International Editions, 1995 9. Data and Computer Communication. Tác giả Wiliam Stallings. Nhà xuất bản Maxwell MacMillan International, 1991 10. Analog and Digital Communication. w. David Gregg, John Whiley & Sons, 1977 128
  66. MỤC LỤC Lời giới thiệu 3 Lời nói đầu 5 Chương 1. NHẬP MÔN LÝ THUYẾT TRUYỀN TIN ì. Tin tức - Thõng tin 7 li. Lượng đo thông tin 9 HI. Hệ thống truyền tin 11 IV. Những vấn đề cơ bàn của hệ thống truyền tin 25 Chương 2. THÔNG TIN VÀ ĐỊNH LUỢNG THÔNG TIN ì. Xác suất 28 li. Lượng tin của nguồn rời rạc 33 HI. Lượng tin trong kênh rời rạc 39 IV. Entropi của nguồn và thông lượng của kênh liên tục 44 Chương 3. MÃ HIỆU ì. Mã hiệu và thõng số cơ bản cùa mã hiệu 48 li. Điều kiện phân tách của mã hiệu 51 IU. Phương pháp biểu diễn mã 56 IV. Mã hệ thống 60 Chương 4. MÃ HÓA ì. Mở đầu 64 li. Mã hóa nguồn 65 UI. Mã hóa kênh 77 Chương 5. ĐIÊU CHÊ TÍN HIỆU ì. Khái niệm về điều chế 95 li. Điều chế cao tẩn các tín hiệu liên tục 98 in. Điểu chế xung 104 IV. Điều chế khóa dịch 113 Các thuật ngữ và từ viết lắt liếng Anh 126 Tài liệu tham khảo 128 129
  67. NHÀ XUẤT BẢN HÀ NỘI - TỐNG DUY TÂN, QUẬN HOÀN KIÊM, HÀ NỘI ĐT: (04) 8252916 - FAX: (04) 9289143 GIÁO TRÌNH Cơ SỞ LÝ THUYẾT TRUYỀN TIN NHÀ XUẤT BẢN HÀ NỘI - 2007 Chịu trách nhiệm xuất bản: NGUYỄN KHẮC OANH Biên tập: PHẠM QUỐC TUẤN Bìa: TRẦN QUANG Kỹ thuật vi tính: NGUYỄN HẰNG Sữa bản in PHẠM QUỐC TUẤN
  68. In 550 cuốn, khổ 17x24cm. tại Công ty cố phán in Khoa học Kỹ thuật. Quyết dinh xuất bàn: 160 - 2007/CXB/444GT - 27/HN. số: 313/CXB ngày 02/3/2007. In xong và nớp lưu chiếu quý III/2007.
  69. SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI Chù biên: Thạc sĩ Trần Thúy Lan GIÁO TRÌNH KINH TÊ VI MÔ (Dùng trong các trường THCN) Ị DẠI HỌC THÁI NGUYÊN ị tSONG TẮM HỌC Llậỉi NHÀ XUẤT BẢN HÀ NỘI - 2008