Đồ án Nghiên cứu mạng NGN và ứng dụng

pdf 74 trang huongle 130
Bạn đang xem 20 trang mẫu của tài liệu "Đồ án Nghiên cứu mạng NGN và ứng dụng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfdo_an_nghien_cuu_mang_ngn_va_ung_dung.pdf

Nội dung text: Đồ án Nghiên cứu mạng NGN và ứng dụng

  1. LỜI MỞ ĐẦU Cùng với sự phát triển của các ngành điện tử - tin học, công nghệ viễn thông trong những năm qua phát triển rất mạnh mẽ cung cấp ngày càng nhiều các loại hình dịch vụ mới đa dạng, an toàn, chất lượng cao, đáp ứng ngày càng tốt hơn yêu cầu của khách hàng. Trong xu hướng phát triển và hội tụ của viễn thông và tin học, cùng với sự phát triển nhanh chóng về nhu cầu của người dùng đối với những dịch vụ đa phương tiện chất lượng cao đã làm cho cơ sở hạ tầng thông tin và viễn thông có những thay đổi lớn về cấu trúc. Những tổng đài chuyển mạch kênh truyền thống với những hạn chế về kiến trúc đã không còn có thể đáp ứng được nhu cầu ngày cao của người dùng, vì thế đòi hỏi cần phải có một giải pháp để đáp ứng được yêu cầu đó. Giải pháp được lựa chọn là mạng thế hệ mới – NGN. Mạng thế hệ mới – NGN dựa trên nền tảng chuyển mạch gói tốc độ cao, dung lượng lớn, tích hợp nhiều công nghệ mới, ứng dụng mới. Vì vậy em chọn đề tài “Nghiên cứu mạng NGN và ứng dụng” để làm đồ án tốt nghiệp, nội dung của đồ án gồm 3 chương: Chương 1: Tổng quan về mạng NGN. Chương 2: Cấu trúc mạng NGN và ứng dụng. Chương 3: Chiến lược phát triển NGN của ngành Viễn thông Việt Nam Em xin chân thành cảm ơn thầy giáo Th.s Mai Văn Lập đã nhiệt tình, tận tụy giúp đỡ em hoàn thành đồ án này. 1
  2. Chƣơng 1 TỔNG QUAN VỀ NGN 1.1 GIỚI THIỆU CHUNG VỀ NGN 1.1.1 Khái niệm NGN Cụm từ “mạng thế hệ tiếp theo” ( Next Generation Network – NGN) bắt đầu được nhắc tới từ năm 1998. NGN là xu hướng phát triển tất yếu của lĩnh vực truyền thông thế giới trong hiện tại và tương lai. Nó tích hợp cả 3 mạng lưới: mạng PSTN, mạng không dây, và mạng số liệu (Internet)vào một kết cấu thống nhất để hình thành một mạng chung, thông minh, hiệu quả cho phép sáp nhập thoại, dữ liệu, video dựa trên nền tảng IP. Mạng thế hệ mới có nhiều tên gọi khác nhau như: - Mạng đa dịch vụ (cung cấp nhiều loại dịch vụ khác nhau) - Mạng hội tụ (hỗ trợ cả lưu lượng thoại và dữ liệu, cấu trúc mạng hội tụ) - Mạng phân phối (phân phối tính thông minh cho mọi phần tử trong mạng) - Mạng nhiều lớp (mạng được phân phối ra nhiều lớp mạng có chức năng độc lập nhưng hỗ trợ nhau thay vì một khối thống nhất như mạng TDM). Cho tới hiện nay, mặc dù các tổ chức viễn thông quốc tế cùng với các nhà cung cấp thiết bị viễn thông trên thế giới đều rất quan tâm và nghiên cứu về chiến lược phát triển NGN nhưng vẫn chưa có một định nghĩa cụ thể và chính xác nào cho mạng NGN. Do đó các tên gọi như trên không thể bao hàm 2
  3. hết mọi chi tiết về mạng thế hệ mới nhưng nó cũng tương đối chính xác, có thể coi đó là những khái niệm chung nhất khi đề cập đến NGN. Bắt nguồn từ sự phát triển của công nghệ thông tin, công nghệ chuyển mạch gói và công nghệ truyền dẫn băng rộng, mạng thông tin thế hệ mới (NGN) ra đời là mạng có cơ sở hạ tầng thông tin duy nhất dựa trên công nghệ chuyển mạch gói, triển khai các dịch vụ một cách đa dạng và nhanh chóng, đáp ứng sự hội tụ giữa thoại và số liệu, giữa cố định và di động. Như vậy, có thể xem mạng thông minh thế hệ mới là sự tích hợp mạng thoại PSTN, chủ yếu dựa trên kỹ thuật TDM, với mạng chuyển mạch gói, dựa trên kỹ thuật IP/ATM. Nó có thể truyền tải tất cả các dịch vụ vốn có của PSTN đồng thời cũng có thể nhập một lượng dữ liệu rất lớn vào mạng IP, nhờ đó có thể giảm nhẹ gánh nặng của mạng PSTN. Tuy nhiên, NGN không chỉ đơn thuần là sự hội tụ giữa thoại và dữ liệu mà còn là sự hội tụ giữa truyền dẫn quang và công nghệ gói, giữa mạng cố định và di động. Vấn đề chủ đạo ở đây là làm sao có thể tận dụng hết lợi thế đem đến từ quá trình hội tụ này. Một vấn đề quan trọng khác là sự bùng nổ nhu cầu của người sử dụng cho một số lượng lớn dịch vụ và ứng dụng phức tạp bao gồm cả đa phương tiện. Hình 1.1 Topo mạng thế hệ sau 3
  4. 1.1.2 Đặc điểm chính của NGN NGN có bốn đặc điểm chính - Nền tảng là hệ thống mở; - Dịch vụ thực hiện độc lập với mạng lưới; - NGN là mạng dựa trên nền chuyển mạch gói, sử dụng các giao thức thống nhất; - Là mạng có dung lượng ngày càng tăng, có tính thích ứng cao, có đủ dung lượng để đáp ứng nhu cầu. Trước hết, do áp dụng cơ cấu mở mà: Các khối chức năng của tổng đài truyền thống chia thành các phần tử mạng độc lập, các phần tử được phân theo chức năng tương ứng và phát triển một cách độc lập. Giao diện và giao thức giữa các bộ phận phải dựa trên các tiêu chuẩn tương ứng. Việc phân tách chức năng làm cho mạng viễn thông truyền thống dần dần đi theo hướng mới, nhà kinh doanh có thể căn cứ vào nhu cầu dịch vụ để tự tổ hợp các phần tử khi tổ chức mạng lưới. Việc tiêu chuẩn hóa giao thức giữa các phần tử có thể thực hiện liên kết giữa các mạng có cấu hình khác nhau. Tiếp đến, việc tách dịch vụ độc lập với mạng nhằm thực hiện một cách linh hoạt và có hiệu quả việc cung cấp dịch vụ. Thuê bao có thể tự bố trí và xác định đặc trưng dịch vụ của mình, không quan tâm đến mạng truyền tải dịch vụ và loại hình đầu cuối. Điều đó làm cho việc cung cấp dịch vụ và ứng dụng có tính linh hoạt cao hơn. Thứ ba, NGN dựa trên cơ sở mạng chuyển mạch gói và các giao thức thống nhất. Mạng thông tin hiện nay, dù là mạng viễn thông, mạng máy tính hay mạng truyền hình cáp, đều không thể lấy một trong các mạng đó làm nền 4
  5. tảng để xây dựng cơ sở hạ tầng thông tin. Nhưng mấy năm gần đây, cùng với sự phát triển của công nghệ IP, người ta mới nhận thấy rõ ràng là mạng viễn thông, mạng máy tính và mạng truyền hình cáp cuối cùng rồi cũng tích hợp trong một mạng IP thống nhất, đó là xu thế lớn mà người ta thường gọi là “dung hợp ba mạng”. Giao thức IP làm cho các dịch vụ lấy IP làm cơ sở đều có thể thực hiện liên kết các mạng khác nhau; con người lần đầu tiên có được giao thức thống nhất mà ba mạng lớn đều có thể chấp nhận được; đặt cơ sở vững chắc về mặt kỹ thuật cho hạ tầng cơ sở thông tin quốc gia. Giao thức IP thực tế đã trở thành giao thức ứng dụng vạn năng và bắt đầu được sử dụng làm cơ sở cho các mạng đa dịch vụ, mặc dù hiện tại vẫn còn nhiều khuyết điểm về khả năng hỗ trợ lưu lượng thoại và cung cấp chất lượng dịch vụ đảm bảo cho số liệu. Tuy nhiên, chính tốc độ đổi mới nhanh chóng trong thế giới Internet, mà nó được tạo điều kiện bởi sự phát triển của các tiêu chuẩn mở sẽ sớm khắc phục những thiếu sót này. 1.2 SỰ HÌNH THÀNH MẠNG NGN Các động lực cơ bản phát triển NGN như sự phát triển công nghệ, thị trường, hội tụ của các mạng riêng lẻ và các loại hình dịch vụ đã tác động tới sự biến đổi cấu trúc mạng cụ thể: 1.2.1 Hiện trạng của mạng viễn thông hiện tại Hiện nay có rất nhiều mạng viễn thông song song cùng tồn tại. Các mạng tồn tại một cách riêng lẻ, ứng với mỗi loại thông tin lại có ít nhất một loại mạng riêng biệt để phục vụ cho dịch vụ đó.  Mạng Telex: dùng để gửi các bức điện dưới dạng ký tự đã được mã hóa bằng 5 bít (mã Baudot). Tốc độ truyền rất thấp (từ 75 tới 300 bit/s)  Mạng điện thoại cố định PSTN: sử dụng kỹ thuật chuyển mạch kênh để truyền thông tin thoại từ đầu cuối đến đầu cuối. 5
  6.  Mạng truyền số liệu: bao gồm các mạng chuyển mạch gói để trao đổi số liệu giữa các máy tính dựa trên giao thức của X.25 và hệ thống truyền số liệu chuyển mạch kênh dựa trên giao thức X.21.  Các tín hiệu truyền hình có thể được truyền theo ba cách: truyền bằng sóng vô tuyến, truyền qua hệ thống mạng truyền hình cáp CATV (Community Antenna Television) bằng cáp đồng trục hoặc truyền qua hệ thống vệ tinh, hay còn gọi là truyền hình trực tiếp DBS (Direct Broadcast System).  Trong phạm vi cơ quan số liệu giữa các máy tính được trao đổi thông qua mạng cục bộ Lan (Local Area Network) mà nổi tiếng nhất là mạng Ethernet, Token Bus, Toke Ring. Với hiện trạng mạng như hiện nay, mỗi mạng được thiết kế cho một dịch vụ riêng biệt mà không thể sử dụng cho mục đích khác, mỗi mạng lại yêu cầu phương pháp thiết kế, sản xuất, vận hành, bảo dưỡng khác nhau. Mỗi dịch vụ là một mạng riêng sẽ dẫn đến tình trạng phức tạp trong việc quản lý mạng, phải đầu tư nhiều chủng loại thiết bị, yêu cầu về thiết bị dự phòng, bảo hành bảo dưỡng lớn, do vậy giá thành cung cấp dịch vụ cao. Do đó sự hội tụ của các mạng là yêu cầu cần thiết, mang lại nhiều lợi ích cho nhà khai thác dịch vụ. 1.2.2 Nhƣợc điểm của tổng đài chuyển mạch kênh Mạng viễn thông hiện nay được thiết kế nhằm mục đích khai thác dịch vụ thoại là chủ yếu. Nhưng hiện nay những lợi nhuận mà dịch vụ thoại mang lại bị suy giảm trầm trọng. Bên cạnh đó là sự tăng doanh thu đột biến của các dịch vụ giá trị gia tăng mang lại. Tức là dữ liệu đã thay thế vị trí của thoại và trở thành nguồn tạo ra lợi nhuận chính. Nhưng để đáp ứng việc phát triển đa dịch vụ và các dịch vụ viễn thông mới trên nền tảng chuyển mạch kênh của mạng PSTN thì có rất nhiều hạn chế, trong đó quan trọng nhất là hạn chế về kiến trúc mạng. 6
  7. Chuyển mạch kênh dựa trên công nghệ TDM cứng nhắc trong việc phân bổ băng thông, với băng thông cố định đã làm cho chuyển mạch kênh gặp nhiều khó khăn khi đưa ra các dịch vụ mới. Các dịch vụ thoại trong mạng PSTN hiện nay sử dụng kỹ thuật điều chế PCM và chiếm băng thông 64kb/s. Nếu chúng ta có thể cung cấp băng thông lớn hơn cho mỗi cuộc gọi thì chất lượng cuộc gọi thoại cũng không vì thế mà tốt hơn. Trái lại, đối với các dịch vụ dữ liệu băng thông rất quan trọng. Một số ứng dụng đòi hỏi băng thông tới 1Gb/s hoặc cao hơn. Sự thay đổi về băng thông thường được gọi là bùng nổ băng thông. Trong khi dịch vụ thoại chuyển mạch kênh luôn đòi hỏi băng thông không đổi, trái lại các dịch vụ dữ liệu thì nhu cầu về băng thông có thể thay đổi tới hàng trăm, thậm trí hàng ngàn lần. Vì vậy mà ứng dụng của chuyển mạch kênh chỉ là dịch vụ thoại và truyền số liệu băng hẹp. Hơn nữa phần phức tạp nhất trong những tổng đài chuyển mạch kênh chính là phần mềm dùng để điều khiển quá trình xử lý cuộc gọi. Phần mềm này chạy trên một bộ xử lý chuyên dụng được tích hợp sẵn với phần cứng vật lý. Hay nói cách khác phần mềm sử dụng trong các tổng đài nội hạt phụ thuộc vào phần cứng của tổng đài. Dịch vụ được tích hợp luôn vào thiết bị của các nhà khai thác. Điều này làm tăng tính độc quyền trong việc cung cấp các hệ thống chuyển mạch, không cung cấp một môi trường kiến tạo dịch vụ mới, làm giới hạn khả năng phát triển dịch vụ mới của các nhà quản trị mạng. Do vậy để đáp ứng được nhu cầu đa dịch vụ và các dịch vụ mới, thì cần phải có một giải pháp mới, đặt trọng tâm vào dữ liệu, chuyển mạch của tương lai phải dựa trên công nghệ gói để chuyển tải chung cả thoại và dữ liệu. Như một sự lựa chọn, các nhà cung cấp dịch vụ đã và đang cố gắng hướng tới việc xây dựng một mạng thế hệ mới Next Generation Network – NGN trên đó hội tụ các dịch vụ thoại, số liệu, đa phương tiện trên một mạng duy nhất – sử dụng công nghệ chuyển mạch gói trên mạng xương sống (Backbone Network). Và đó không chỉ là mạng phục vụ thông tin thoại, cũng không chỉ 7
  8. là mạng phục vụ truyền số liệu mà đó là một mạng thống nhất, mạng hội tụ đem lại ngày càng nhiều các dịch vụ tiên tiến đáp ứng nhu cầu ngày một tăng và khắt khe hơn từ phía khách hàng. Chính vì vậy mà mạng thế hệ mới NGN công nghệ chuyển mạch kênh truyền thống dần bị thay thế bởi chuyển mạch gói. 1.2.3 Nhu cầu phát triển của xã hội thông tin Nhu cầu về cung cấp đa dịch vụ và các dịch vụ mới: Sự phát triển của xã hội thông tin đã làm nảy sinh nhu cầu được cung cấp đa dịch vụ và các dịch vụ mới: các dịch vụ truyền thông băng rộng, truyền thông băng hẹp, các dịch vụ truyền thông thời gian thực (như trò chơi trên mạng thời gian thực, ), các dịch vụ chuyên ngành (trợ giúp từ xa, đào tạo giáo dục từ xa qua mạng, chăm sóc sức khỏe qua mạng, ), các dịch vụ đa phương tiện, các dịch vụ hội nghị truyền hình, cầu truyền hình ra nước ngoài, và tới các vùng nông thôn, vùng sâu, vùng xa, Nhu cầu về khả năng liên lạc thông tin rộng khắp: Các dịch vụ được cung cấp phải tiện lợi, dễ sử dụng, có khả năng liên lạc thông tin rộng khắp đa phương tiện, đảm bảo độ tin cậy, có tốc độ truy cập cao, có thể truy cập ở bất kỳ thời gian nào, bất kỳ đâu (công sở hay ở nhà, hay ở những nơi công cộng, ) Nhu cầu về việc phát triển hệ thống linh hoạt, mềm dẻo: Để thuận tiện cho việc giám sát quản lý, phát triển cung cấp dịch vụ, đáp ứng nhu cầu của thuê bao, đòi hỏi có một cấu trúc mạng phải đơn giản, độ linh hoạt cao, có khả năng hỗ trợ tất cả các kết nối cả vô tuyến và hữu tuyến, hỗ trợ tất cả các dịch vụ của các mạng hiện tại, dễ dàng nâng cấp và mở rộng, Nhu cầu dễ dàng phát triển các dịch vụ mới: Cấu trúc mạng phải cho phép việc tạo ra dịch vụ mới được dễ dàng. Các nhà khai thác mạng, và các tổ chức cá nhân có thể dựa trên cấu trúc mạng 8
  9. để phát triển dịch vụ mới mà không phụ thuộc vào nhà cung cấp mạng, để có thể tạo ra các dịch vụ mới tích hợp công nghệ thông tin và viễn thông IT (Information Telecommunication), các dịch vụ đáp ứng cho nhu cầu phát triển của các doanh nghiệp, 1.2.4 Xu hƣớng phát triển Sự gia tăng cả về chất lượng lẫn số lượng của các nhu cầu dịch vụ ngày càng trở nên phức tạp từ phía khách hàng đã kích thích sự phát triển nhanh chóng của thị trường công nghệ Điện tử - Tin học - Viễn thông. Hiện tại xu hướng phát triển của công nghệ điện tử - tin học - viễn thông đang diễn ra theo xu hướng hội tụ định hướng kết nối CO (Connection Operation và không định hướng kết nối CL (Connectionless Operation). Công nghệ phát triển định hướng kết nối có ưu điểm chất lượng dịch vụ QoS cao, chất lượng mạng tốt phát triển cùng với công nghệ truyền dẫn ATM cho phép phát triển các dịch vụ băng rộng. Sự phát triển theo hướng công nghệ không định hướng kết nối CL có ưu điểm đơn giản, tiện lợi, chi phí thấp, tiết kiệm băng thông nên đang được phát triển mạnh mẽ. Xu hướng phát triển công nghệ định hướng kết nối và không định hướng kết nối dần tiệm cận gần nhau và hội tụ tiến tới việc phát triển công nghệ ATM/IP được đặt nhiều kỳ vọng cho việc phát triển mạng theo hướng dung hợp thống nhất có thể làm cho dịch vụ độc lập với mạng lưới, nhanh chóng cung cấp dịch vụ mang tính tổng hợp. 9
  10. Thế giới điện thoại Thế giới Internet Định hướng kết nối Không định hướng kết CO nối CL Chiến lược phát triển mới Mạng dịch vụ mới ATM/IP Hình1.2 Xu hướng phát triển Sự phát triển của công nghệ mới và nhiều dịch vụ mới đã tác động trực tiếp tới sự phát triển của cấu trúc mạng. Nghĩa là nhu cầu xã hội cần có mạng thế hệ mới NGN. Giải pháp cốt lõi trong mạng NGN chính là công nghệ Softswitch – công nghệ chuyển mạch mềm. Chuyển mạch mềm thực hiện các chức năng tương tự như chuyển mạch kênh nhưng với năng lực mềm dẻo và các tính năng ưu việt hơn. Các ưu điểm của chuyển mạch mềm mang lại là do việc chuyển mạch bằng phần mềm dựa trên cấu trúc phân tán và các giao diện lập trình ứng dụng mở. Các giao diện lập trình mở cho phép tương thích phần mềm điều khiển và phần cứng của các nhà cung cấp khác nhau. Cụ thể chuyển mạch mềm sẽ được trình bày ở chương 2. 1.3 NHỮNG LỢI ÍCH CỦA SOFTSWITCH MANG LẠI . Mạng thế hệ sau có khả năng cho ra đời những dịch vụ giá trị gia tăng hoàn toàn mới hội tụ ứng dụng thoại, số liệu và video. Các dịch vụ 10
  11. này hứa hẹn đem lại doanh thu cao hơn nhiều so với các dịch vụ truyền thống. . Do các dịch vụ của NGN được viết trên các phần mềm do đó việc triển khai nâng cấp, cũng như việc cung cấp các dịch vụ mới trở nên dễ dàng. . Khả năng thu hút khách hàng của mạng NGN rất cao, từ sự tiện dụng hội tụ cả thoại, dữ liệu, video đến hàng loạt các dịch vụ khác mà nhà cung cấp dịch vụ có thể cung cấp cho khách hàng, thêm nữa họ có khả năng kiểm soát các dịch vụ thông tin của mình. Điều này làm cho khách hàng luôn luôn thoả mãn và lệ thuộc hơn vào nhà cung cấp dịch vụ, cơ hội kinh doanh của nhà cung cấp sẽ lớn hơn và ổn định hơn. . Giảm chi phí xây dựng mạng: Khi xây dựng một mạng hoàn toàn mới cũng như mở rộng mạng có sẵn, thì mạng chuyển mạch mềm có chi phí ít tốn kém hơn nhiều so với mạng chuyển mạch kênh. Điều này làm cho trở ngại khi tham gia thị trường của những nhà khai thác dịch vụ mới không còn lớn như trước nữa. Hiện nay sự cạnh tranh giữa những nhà khai thác dịch vụ chính là những dịch vụ gì mà họ có thể cung cấp cho khách hàng, và độ hài lòng của khách hàng của khách hàng khi sử dụng những dịch vụ đó, nên hầu hết các nhà khai thác đều tập trung đầu tư vào việc viết phần mềm phát triển dịch vụ. . Giảm chi phí vận hành bảo dưỡng và quản lý mạng hiệu quả hơn. Softswitch không còn các tổng đài lớn tập trung, tiêu tốn năng lượng và nhân lực điều hành, chuyển mạch giờ đây là các máy chủ đặt phân tán trong mạng, được điều khiển bởi các giao diện thân thiện người sử dụng (GUI), do đó chi phí điều hành và hoạt động của mạng được giảm đáng kể. 11
  12. . Sử dụng băng thông có hiệu quả hơn: Do mạng truyền vận NGN là mạng chuyển mạch gói cho nên với cùng một cơ sở hạ tầng truyền dẫn thì hiệu suất sử dụng băng thông của nó cao hơn nhiều so với chuyển mạch kênh. Thêm nữa, theo như thống kê thì đối với thoại thì 60% thời gian cuộc gọi là khoảng lặng, mạng thế hệ mới có cơ chế triệt khoảng lặng nên làm tăng hiệu suất sử dụng băng thông một cách đáng kể. 1.4 SO SÁNH CÔNG NGHỆ HIỆN TẠI VÀ CÔNG NGHỆ TƢƠNG LAI Thành phần mạng Công nghệ hiện tại Công nghệ tương lai Mạng truy nhập - Cáp xoắn băng hẹp - Cáp xoắn băng hẹp - Truyền hình cáp số và - Truyền hình cáp số tương tự chuyên dụng và tương tự chuyên - GSM không dây dụng - Cáp quang - Cáp quang - Cáp xoắn băng rộng - Modem cáp - IP qua vệ tinh - Ethernet Chuyển mạch và - Tổng đài PSTN - Định tuyến IP định tuyến - Chuyển mạch ATM - Chuyển mạch quang - Chuyển mạch Frame Relay - Định tuyến IP Mạng truyền dẫn - PDH - DWDM đường trục - SDH 12
  13. Chuyển mạch kênh Chuyển mạch mềm Ứng dụng và Dịch vụ ứng dụng và các đặc tính (Trung tâm quản lý, cung cấp, dự phòng) ch dịch vụ ạ Open Protocols APIs Điều khiển nm ể cuộc gọi và Chuyển mạch mềm (Trung tâm điều khiển cuộc gọi) chuyển mạch ichuy ố Open Protocols APIs Kh Phần cứng Phần cứng truyền dẫn truyền dẫn - Nhà cung cấp đưa ra tất cả - Các giải pháp đưa ra từ nhiều nhà các giải pháp trong một khối cung cấp, ở nhiều mức độ khác chuyển mạch duy nhất: Phần nhau với nhiều sản phẩm nguồn cứng, phần mềm và các trình mở theo chuẩn. ứng dụng. - Khách hàng tự do chọn lựa những - Khách hàng phụ thuộc nhà sản phẩm tốt nhất để xây dựng cung cấp: Không có đổi mới, từng lớp mạng trong hệ thống. Các chi phí vận hành và bảo dưỡng chu ẩn mở cho phép mở rộng và cao. gi ảm chi phí. 13
  14. Chƣơng 2 CẤU TRÚC MẠNG NGN VÀ ỨNG DỤNG 2.1 CẤU TRÚC MẠNG NGN 2.1.1 Cấu trúc chức năng mạng NGN Đặc điểm NGN là cấu trúc phân lớp theo chức năng và phân tán các tài nguyên trên mạng. Điều này đã làm cho mạng được mềm hóa và sử dụng các giao diện mở API (Application Program Interface) để kiến tạo các dịch vụ mà không phụ thuộc nhiều vào các nhà cung cấp thiết bị và dịch vụ mạng. Mô hình cấu trúc NGN gồm 4 lớp chức năng sau: Lớp ứng dụng Giao diện mở API Lớp điều khiển L ớ qup Giao diện mở API ả lýn Lớp truyền thông Giao diện mở API Lớp truyền dẫn và truy nhập Hình 2.1 Cấu trúc phân lớp của mạng NGN - Lớp truy nhập và truyền dẫn; 14
  15. - Lớp truyền thông; - Lớp điều khiển; - Lớp quản lý. Lớp truyền dẫn và truy nhập Phần truyền dẫn: Áp dụng kỹ thuật ghép kênh phân chia theo mật độ bước sóng DWDM ở lớp vật lý nhằm đảm bảo cung cấp chất lượng dịch vụ (QoS) theo yêu cầu của ứng dụng. Phần truy nhập: Hướng tới sử dụng công nghệ quang cho thông tin hữu tuyến và CDMA cho thông tin vô tuyến. Thống nhất sử dụng công nghệ IP. Lớp truyền thông Thiết bị chính trong lớp truyền thông là các cổng (Gateway) làm nhiệm vụ kết nối giữa các phần của mạng và giữa các mạng khác nhau. Lớp điều khiển Lớp điều khiển có nhiệm vụ điều khiển kết nối giữa các đầu cuối, với yêu cầu tương thích với tất cả các loại giao thức và báo hiệu. Lớp điều khiển có thể được tổ chức theo kiểu module, theo đó các bộ điều khiển độc lập sẽ thực hiện các chức năng điều khiển khác nhau. Thiết bị chính trong lớp điều khiển là Softswitch (chuyển mạch mềm) làm nhiệm vụ báo hiệu và điều khiển cuộc gọi. Lớp quản lý Lớp quản lý là một lớp tác động trực tiếp lên tất cả các lớp còn lại, làm nhiệm vụ giám sát các hoạt động của mạng. Lớp quản lý phải đảm bảo hoạt động được trong môi trường mở, với nhiều giao thức, dịch vụ và các nhà khai thác khác nhau. 15
  16. Xét trên góc độ dịch vụ, NGN còn có thêm lớp ứng dụng ngay phía trên lớp điều khiển, bao gồm các nút (server) cung cấp các dịch vụ khác nhau. Lớp ứng dụng liên kết với lớp điều khiển thông qua giao diện mở API. Từ những phân tích trên, ta xây dựng sơ đồ các thực thể chức năng của mạng NGN: Service & Application AS-F MS-F R-F/A-F Call control IP MGC-F/CA-F & Signaling IW-F Transport & Transmission) SG-F Media MG-F Hình 2.2 Các thực thể chức năng của Softswitch AS-F: Application Server Function MS-F: Media Server Function MGC: Media Gateway Control Function CA-F: Call Agent Function IW-F: Interworking Function R-F: Routing Function A-F: Accounting Function SG-F: Signaling Gateway Function MG-F: Media Gateway Function Nhiệm vụ của từng thực thể như sau: 16
  17. AS-F: (Chức năng Server ứng dụng): Đây là thực thể thi hành ứng dụng nên nhiệm vụ chính là cung cấp các logic dịch vụ và thi hành một hay nhiều các ứng dụng/dịch vụ. MS-F: Cung cấp các dịch vụ tăng cường cho xử lý cuộc gọi. Nó hoạt động như một server để xử lý các yêu cầu từ AS-F hoặc MGC-F. MGC-F: (Chức năng điều khiển cổng phương tiện): được thực hiện bởi thực thể vật lý MGC. Chức năng MGC-F cung cấp logic cuộc gọi và tín hiệu báo hiệu xử lý cuộc gọi cho một hay nhiều Media Gateway. CA-F: là một phần chức năng của MGC- F. Thực thể này được kích hoạt khi MGC-F thực hiện việc điều khiển cuộc gọi. IW-F: cũng là một phần chức năng của MGC-F. Nó được kích hoạt khi MGC-F thực hiện các báo hiệu giữa các mạng báo hiệu khác nhau. R-F: cung cấp thông tin định tuyến cho MGC-F. A-F: cung cấp thông tin dùng cho việc tính cước. SG-F: dùng để chuyển các thông tin báo hiệu của mạng PSTN qua mạng IP. MG-F: dùng để chuyển thông tin từ dạng truyền dẫn này sang truyền dẫn khác. 2.1.2 Cấu trúc vật lý mạng NGN NGN được hiểu là mạng thế hệ sau hay mạng thế hệ kế tiếp mà không phải là mạng hoàn toàn mới, nên khi xây dựng và phát triển mạng theo xu hướng NGN, người ta chú ý đến vấn đề kết nối NGN với mạng truyền thống và tận dụng các thiết bị viễn thông hiện có trên mạng nhằm đạt được hiệu quả khai thác tối đa. Các mạng được kết nối tới mạng lõi IP thông qua các cổng (hình 2.3) 17
  18. ISP SS7 Cổng báo Server Server đặc hiệu DNS thư mục tính/ứng Người sử dụng dụng Chuyển di động MGC mạch mêm GPRS UMTS Cổng không dây Người sử dụng PSTN điện thoại Cổng trung Mạng Mạng IP kế không dây (WDM/SDH/ATM) MPLS, Multicast PC Nhà kinh doanh Cổng truy nhập Cổng thường Truyền LAN trú hình kĩ xDSL thuật số RSVP, Mobile IP, IP Sec Tính cước Mạng quản lí GE, MAN Nguời sử dụng thường trú/ nhà kinh doanh Hình 2.3 Cấu trúc vật lý của mạng NGN - Cổng truy nhập: AG (Access Gateway) kết nối giữa mạng lõi và mạng truy nhập, RG (Resident Gateway – cổng thường trú) kết nối giữa mạng lõi với mạng thuê bao tại nhà. - Cổng giao tiếp: TG(Trunking Gateway – cổng trung kế) kết nối giữa mạng lõi với mạng PSTN/ISDN, WG (Wireless Gateway – cổng không dây) kết nối giữa mạng lõi với mạng di động. Mạng trục IP được thể hiện là mạng IP kết hợp công nghệ ATM hoặc MPLS. Vấn đề sử dụng ATM hoặc MPLS còn đang tách thành 2 xu hướng. Các dịch vụ và ứng dụng trên mạng NGN được quản lý và cung cấp bởi các máy chủ dịch vụ (server). Các máy chủ này hoạt động trên mạng thông minh (IN – Intelligent Network) và giao tiếp với mạng PSTN thông qua SS7. 18
  19. 2.2 CÁC PHẦN TỬ TRONG NGN Hình 2.4 Các thành phần chính của mạng NGN và chức năng 2.2.1 Cổng phƣơng tiện (MG – Media Gateway) MG là thành phần nằm trong lớp truyền thông. MG cung cấp phương tiện để truyền tải thông tin thoại, dữ liệu, fax và video giữa mạng gói IP và các mạng khác. Trong mạng PSTN, dữ liệu thoại được mang trên kênh DS0. Để truyền dữ liệu này vào mạng gói, mẫu thoại cần được nén lại và đóng gói. Đặc biệt ở đây người ta sử dụng bộ xử lý tín hiệu số DSP (Digital Signal Processor) thực hiện các chức năng: chuyển đổi AD (Analog to Digital), nén mã thoại/ audio, triệt tiếng dội, bỏ khoảng lặng, mã hóa, tái tạo tín hiệu thoại, truyền các tín hiệu DTMF, 19
  20. Luồng lên (miền chuyển mạch) gói) Thành phần API API HOST CPU cổng Hội tụ mạng phương tiện API API API API Hội tụ DSP Hội tụ DSP API API Sắp xếp DSP Sắp xếp DSP Chuy ển đổi Chuyển đổi PSTN PSTN Luồng xuống (miền PSTN) Hình 2.5 Cấu trúc của MG - Truyền dữ liệu thoại sử dụng giao thức thời gian thực (RTP – Real Time Protocol); - Cung cấp khe thời gian T1 hay tài nguyên xử lý tín hiệu số (DSP) dưới sự điều khiển của MGC. Đồng thời quản lý tài nguyên DSP cho dịch vụ này; - Hỗ trợ các giao thức đã có như loop – start, ground – start, E&M, CAS, QSIG và ISDN qua T1; - Quản lý tài nguyên và kết nối T1; - Cung cấp khả năng thay nóng các card T1 hay DSP; - Có phần mềm MG dự phòng; 20
  21. - Cho phép khả năng mở rộng MG về: cổng (port), cards, các nút, mà không làm thay đổi các thành phần khác. MG chỉ cần thiết khi có cơ sở hạ tầng TDM (Không cần chức năng MG cho việc truyền thông end-to-end ở mạng gói như “ IP-phone gọi IP- phone ”. 2.2.2 Bộ điều khiển cổng phƣơng tiện (MGC – Media Gateway Controller) MGC là đơn vị chức năng cơ bản của chuyển mạch mềm, và cũng thường được gọi là tác nhân cuộc gọi (Call Agent) hay Bộ điều khiển cổng (Gateway Controller), hay chuyển mạch mềm. MGC điều khiển xử lý cuộc gọi, còn MG và SG sẽ thực hiện truyền thông. MGC thực hiện điều khiển MG. Ngoài ra còn giao tiếp với hệ thống OSS và BSS. MGC chính là chiếc cầu nối giữa các mạng có đặc tính khác nhau như PSTN, SS7, mạng IP. Nó chịu trách nhiệm quản lý lưu lượng thoại và dữ liệu qua các mạng khác nhau. Một MGC kết hợp với MG, SG tạo thành cấu hình tối thiểu cho chuyển mạch mềm. 21
  22. AS/FS MS MGC MGC MGC SG MG Non IP IP SS7 PSTN Network TDM/ATM Network Hình 2.6 Vai trò của MGC trong NGN Trong đó, các thiết bị thuộc mạng IP là các Router, các chuyển mạch thuộc mạng Backbone để truyền tải các gói tin đi. Trong khi đó mạng không IP (non IP network) là mạng có các thiết bị đầu cuối không phải thuộc mạng IP và các mạng vô tuyến không dây. Ví dụ về các thiết bị đầu cuối không thuộc mạng IP: thiết bị đầu cuối ISDN, IAD (Integrated Access Device) cho mạng DSL, Các chức năng của MGC: - Điều khiển cuộc gọi, duy trì trạng thái của mỗi cuộc gọi trên một MG; - Điều khiển và hỗ trợ hoạt động của MG, SG; - Trao đổi các bản tin cơ bản giữa 2 MG-F; - Xử lý bản tin báo hiệu SS7 (khi sử dụng SIGTRAN); - Xử lý các bản tin liên quan QoS như RTCP; - Thực hiện định tuyến cuộc gọi (bao gồm bảng định tuyến và biên dịch); - Ghi lại các thông tin chi tiết của cuộc gọi để tính cước (CDR- Call Detail Record); - Điều khiển quản lý băng thông; 22
  23. Các giao thức MGC có thể sử dụng: - Giao thức thiết lập cuộc gọi: H.323, SIP; - Giao thức điều khiển MG: MGCP, MEGACO/H.248; - Giao thức điều khiển SG: SIGTRAN (SS7); - Giao thức truyền thông tin: RTP, RCTP. 2.2.3 Cổng báo hiệu (SG – Signaling Gateway) SG thực hiện chức năng cầu nối giữa mạng báo hiệu SS7 và các nút được quản lý bởi chuyển mạch mềm trong mạng IP. SG làm cho chuyển mạch mềm giống như một nút SS7 trong mạng báo hiệu SS7. SG có các chức năng sau: - Cung cấp một kết nối vật lý đến mạng báo hiệu; - Truyền thông tin báo hiệu giữa MGC và SG thông qua mạng IP; - Thiết lập đường truyền dẫn cho thoại và các dạng dữ liệu khác. 2.2.4 Server phƣơng tiện (MS – Media Server) MS là thành phần lựa chọn của Softswitch, được sử dụng để xử lý các thông tin đặc biệt. Một Media Server phải hỗ trợ phần cứng với hiệu suất cao nhất. Các chức năng của MS - Chức năng voice-mail cơ bản ; - Hộp thư fax tích hợp hay các thông báo có thể sử dụng e-mail hay các bản tin ghi âm trước (Pre-recorded Message) ; - Khả năng nhận dạng tiếng nói nếu có; - Khả năng hội nghị truyền hình (Video conference); - Khả năng chuyển đổi thoại sang văn bản (Speech -to- text) 23
  24. 2.2.5 Server ứng dụng/server đặc tính (AS/FS) Server đặc tính là một server ở mức ứng dụng chứa một loạt các dịch vụ của doanh nghiệp. Chính vì vậy mà nó còn được gọi là Server ứng dụng thương mại. Vì hầu hết các Server này tự quản lý các dịch vụ và truyền thông qua mạng IP nên chúng không rằng buộc nhiều với Softswitch về việc phân chia hay nhóm các thành phần ứng dụng. Các dịch vụ giá trị gia tăng có thể trực thuộc Call Agent, hoặc cũng có thể thực hiện một các độc lập. Những ứng dụng này giao tiếp với Call Agent thông qua các giao thức như SIP, H323 Chúng thường độc lập với phần cứng nhưng lại yêu cầu truy nhập cơ sở dữ liệu đặc trưng. Chức năng của FS Chức năng cơ bản của Feature Server là xác định tính hợp lệ và hỗ trợ các thông số dịch vụ thông thường cho hệ thống đa chuyển mạch. Để thấy rõ hơn ta xét một vài ví dụ về dịch vụ đặc tính: - Hệ thống tính cước sử dụng các bộ CDR (Call Detail Record – bản ghi chi tiết cuộc gọi). Chương trình CDR có rất nhiều đặc tính, chẳng hạn khả năng ứng dụng tốc độ dựa trên loại đường truyền, thời điểm trong ngày Dịch vụ này cho phép khách hàng truy cập vào bản tin tính cước của họ thông qua cuộc gọi thoại hay truy cập Web yêu cầu - VPN - Dịch vụ này sẽ thiết lập mạng riêng ảo cho khách hàng với các đặc tính sau: Băng thông xác định (Thông qua mạng thuê riêng tốc độ cao); Đảm bảo QoS; Nhiều tính năng riêng theo chuẩn; Kế hoạch quay số riêng; Bảo mật các mã thoại được truyền dẫn, 24
  25. 2.3 CÁC GIAO THỨC BÁO HIỆU VÀ ĐIỀU KHIỂN TRONG NGN: Kiến trúc của NGN là kiến trúc phân tán vì thế mà các chức năng báo hiệu và xử lý báo hiệu, chuyển mạch, điều khiển cuộc gọi, được thực hiện bởi các thiết bị nằm phân tán trong cấu hình mạng. Để có thể tạo ra các kết nối giữa các đầu cuối nhằm cung cấp dịch vụ, các thiết bị này phải trao đổi các thông tin báo hiệu và điều khiển với nhau. Cách thức trao đổi các thông tin báo hiệu và điều khiển đó được quy định trong các giao thức báo hiệu và điều khiển được sử dụng trong mạng. Trong mạng NGN có các giao thức báo hiệu và điều khiển cơ bản sau: - H.323; - SIP; - BICC; - SIGTRAN; - MGCP, MEGACO/H.248. - SS7 Giao thức ngang cấp H.323, SIP được sử dụng để trao đổi thông tin báo hiệu giữa các MGC, và giữa các MGC và các server. Dùng để thiết lập cuộc gọi. Giao thức chủ tớ MGCP, MEGACO là giao thức báo hiệu điều khiển giữa MGC và các MG (trong đó MGC điều khiển MG). Giao thức SIGTRAN là giao thức truyền tải báo hiệu trong mạng IP, và giữa MGC và SG (Signaling Gateway). Giao thức BICC là giao thức đảm bảo truyền thông giữa các server (hay MGC). Công nghệ VoIP - thoại trên mạng IP - phát triển mạnh mẽ trong những năm gần đây. Các chuẩn và mô hình báo hiệu khác nhau trong mạng VoIP lần lượt được sử dụng bắt đầu từ H.323 đến SIP và MGCP. Mạng NGN kế thừa 25
  26. và tiếp tục sử dụng các chuẩn này và có thêm các giao thức mới như: MEGACO/H.248, BICC, SIGTRAN, SS7. 2.3.1 MEGACO/H.248 MEGACO/H.248 tương tự với MGCP về mặt cấu trúc và mối liên hệ giữa bộ điều khiển và cổng Gateway, tuy nhiên MEGACO/H.248 hỗ trợ đa dạng hơn các loại mạng. MEGACO không bị ràng buộc bởi bất kỳ một giao thức điều khiển cuộc gọi ngang cấp nào (ví dụ như SIP, H.323) và hoàn toàn phụ thuộc vào thiết kế của người quản trị mạng. 2.3.2 BICC BICC là giao thức được phát triển dựa trên cơ sở ISUP trong SS7 với đặc điểm định nghĩa và thi hành một cách nhanh chóng và dễ dàng liên kết hoạt động với ISUP. BICC là giao thức báo hiệu giữa 2 MGC, có thể từ các nhà cung cấp khác nhau, nhằm mục đích đảm bảo lưu lượng thoại dùng kỹ thuật gói. BICC hỗ trợ các dịch vụ băng hẹp (PSTN, ISDN) một cách độc lập với đường truyền và kỹ thuật chuyển tải bản tin tín hiệu. Thông qua báo hiệu BICC, mạng NGN với nền tảng chuyển mạch gói IP có thể cung cấp đầy đủ các dịch vụ băng hẹp. 2.3.3 SIGTRAN Giao thức SIGTRAN là giao thức tin cậy để truyền báo hiệu SS7 qua mạng IP. SIGTRAN cho phép các nút phía mạng IP giao tiếp với các nút phía mạng SS7 như thể chúng là một phần của báo hiệu SS7. Nó cũng cho phép các nút SS7 có thể giao tiếp với nhau qua các link IP, làm giảm lưu lượng link báo hiệu, tránh tắc nghẽn. Giao thức SIGTRAN cung cấp tất cả các chức năng cần thiết để hỗ trợ cho báo hiệu SS7 qua mạng IP, bao gồm: Điều khiển luồng. Phân phối tuần tự các bản tin trong các luồng điều khiển độc lập. 26
  27. Chỉ ra điểm báo hiệu nguồn đích. Chỉ ra kênh thoại. Phát hiện lỗi, truyền lại và các thủ tục sửa sai khác. Khôi phục lại các thành phần nằm trong các đường chuyển tiếp. Điều khiển tránh tắc nghẽn trên Internet. Xác định trạng thái của các thực thể trên mạng (đang phục vụ, ngừng phục vụ). Hỗ trợ các cơ chế bảo mật để đảm bảo các thông tin báo hiệu. Mở rộng khả năng hỗ trợ về bảo mật và các yêu cầu phát triển về sau. Adaptation Protocol (xUA, xPA) SIGTRAN Common Signaling Architectural Model Transport (SCTP) Standard Internet Protocol (IP) Hình 2.7 Mô hình kiến trúc SIGTRAN 27
  28. Như trên hình 2.7 mô hình kiến trúc SIGTRAN gồm 3 phần tử: . Giao thức IP. . Giao thức truyền vận báo hiệu chung (SCTP): đây là một giao thức hỗ trợ một tập chung các chức năng truyền vận cho truyền vận báo hiệu. . Một lớp tương thích hỗ trợ các dịch vụ cơ bản được yêu cầu bởi các giao thức ứng dụng báo hiệu cụ thể. Có rất nhiều giao thức lớp tương thích được định nghĩa bởi IETF: M2PA, M2UA, M3UA, SUA, IUA. Nhưng chỉ có một giao thức được thực hiện tại một thời điểm. Tập giao thức SIGTRAN dựa vào giao thức truyền vận SCTP. SCTP (Stream Control Transmission Protocol) là giao thức truyền vận trong tập giao thức SIGTRAN. SCTP giống TCP nhưng có thêm một số chức năng như đa luồng, đa tuyến để tạo cấu hình dự phòng, phục hồi hay đóng gói và truyền theo bản tin, không truyền theo một nhóm byte như TCP. Các giao thức trong SIGTRAN đều sử dụng SCTP ở mức truyền tải. Các thành phần trong giao thức SIGTRAN: M2UA: cung cấp dịch vụ của lớp MTP2 dưới mô hình client-server, ví dụ như kết nối giữa SG và MGC. Lớp MTP3 là người dùng của M2UA. M2PA: cung cấp dịch vụ của lớp MTP2 dưới mô hình ngang hàng peer-to- peer, ví dụ như kết nối giữa các SG. Lớp MTP3 là người dùng của M2PA. M3UA: cung cấp dịch vụ lớp MTP3 ở cả mô hình client-server (SG-to- MGC) và peer-to-peer. Lớp sử dụng nó là SCCP hoặc ISUP. SUA: cung cấp dịch vụ lớp SCCP ở mô hình ngang hàng như giữa SG với SCP nằm bên phía mạng IP (IP SCP). Lớp sử dụng SUA là TCAP. IUA: cung cấp dịch vụ lớp ISDN. Kết luận: Giao thức Sigtran là một giao thức mới ứng dụng cho mạng NGN, nó cho phép các nút phía mạng IP giao tiếp với các nút phía mạng SS7 nhằm nâng cao hiệu suất sử dụng mạng và phối hợp hoạt động giữa mạng PSTN hiện có với mạng NGN trong tương lai. Vì vậy, việc nghiên cứu giao thức 28
  29. Sigtran cùng các tính năng kỹ thuật và phương pháp đo kiểm các tính năng kỹ thuật trong đó cho phép triển khai mạng NGN được dễ dàng hơn trong tương lai và đặc biệt hỗ trợ phối hợp tương tác hoạt động giữa mạng hiện đang tồn tại với mạng NGN. 2.3.4 Báo hiệu SS7 Chức năng chính của việc báo hiệu là thiết lập, giám sát, và điều khiển việc truyền tin trên mạng viễn thông. Hiện nay các tổng đài đều hướng tới sử dụng báo hiệu số 7. NGN của VNPT đang áp dụng giải pháp SURPASS của Siemens. Giải pháp này cũng sử dụng báo hiệu số 7. Hệ thống báo hiệu số 7 (SS7) là hệ thống báo hiệu kênh chung được công bố vào những năm 80 ở sách vàng của CCITT. Ban đầu SS7 được thiết kế cho những ứng dụng điều khiển cuộc gọi trong mạng thoại nhưng cho tới nay các ứng dụng SS7 đã được mở rộng rất lớn bao gồm các chức năng như truy vấn cơ sở dữ liệu, giao dịch, vận hành mạng, mạng tích hợp đa dịch vụ (ISDN). SS7 thực hiện báo hiệu ngoài băng (báo hiệu ngoài băng là tín hiệu có tần số ngoài khoảng 0,3 đến 3,4 kHz) trong mạng PSTN. SS7 hỗ trợ mạng PSTN xử lý, thiết lập cuộc gọi, trao đổi thông tin định tuyến, vận hành, tính cước, và hỗ trợ các dịch vụ mạng thông minh (IN). Ưu điểm: Tốc độ nhanh: Trong phần lớn các trường hợp thời gian thiết lập kết nối dưới 1s. Là do thông tin báo hiệu được truyền trực tiếp giữa các bộ vi xử lý, tín hiệu được điều chế dưới dạng số và theo tốc độ chuẩn 64kb/s của CCITT. Dung lượng cao: Mỗi kênh báo hiệu có thể xử lý tín hiệu báo hiệu cho rất nhiều cuộc gọi trong cùng một lúc. Nâng cao hiệu suất của việc sử dụng kênh thông tin trong mạng. 29
  30. Tính kinh tế: SS7 cần ít thiết bị hơn so với thiết bị truyền thống. Một ưu điểm nữa là SS7 chỉ chiếm kênh khi thuê bao bị gọi nhấc máy. Độ tin cậy cao: Nhờ sử dụng mạng báo hiệu dành riêng độc lập và đè lên tuyến truyền tin. Cùng với việc sử dụng các mã sửa sai (như sử dụng các tổ hợp bit phát hiện lỗi, giám sát và sửa lỗi cho các bản tin báo hiệu). Tính mềm dẻo: Do thực hiện việc truyền tin theo gói mà tốc độ báo hiệu có thể thay đổi và đáp ứng được nhiều hơn các dịch vụ giá trị gia tăng. Mạng báo hiệu SS7 về bản chất là một mạng chuyển mạch gói hoạt động riêng biệt và song song với hệ thống mạng thoại. 2.3.4.1 Các phần tử của mạng báo hiệu số 7 Điểm báo hiệu (SP – Signalling Point) Điểm báo hiệu (SP) là một node (đầu cuối báo hiệu) trên mạng thực hiện việc chuyển mạch thoại cho các kênh thoại và thực hiện việc chuyển mạch gói cho các gói tin của báo hiệu SS7. Điểm báo hiệu giữ vai trò như một tổng đài (chức năng truyền dẫn và định hướng lưu lượng qua mạng) trong mạng viễn thông. Mỗi điểm báo hiệu được xác định duy nhất bởi một mã điểm (PC – Point Code). Mã điểm được mang bên trong bản tin báo hiệu để xác định mã điểm nguồn (OPC – Origination PC) và mã điểm đích (DPC – Destination PC). Mỗi điểm báo hiệu sử dụng bảng định tuyến để chọn đích đến chính xác cho mỗi bản tin báo hiệu. 30
  31. Các dạng điểm báo hiệu: Có 3 loại điểm báo hiệu trong mạng SS7 Hình 2.8 Các thành phần mạng SS7 cơ bản SSP: Điểm chuyển tiếp dịch vụ STP: Điểm chuyển tiếp báo hiệu SCP: Điểm điều khiển dịch vụ báo hiệu Điểm chuyển tiếp dịch vụ: (SSP – Service Switching Point) SSP là các bộ não của mạng SS7 và thường được đặt tại các chuyển mạch. Vì các bản tin báo hiệu sẽ được khởi xướng hoặc kết cuối bên trong chúng, các SSP được xem như các “điểm cuối trong mạng”. SSP cung cấp các chức năng giao tiếp với tổng đài nội hạt. Nó phải biến đổi các tín hiệu báo hiệu từ chuyển mạch thoại thành các bản tin báo hiệu SS7. Sau đó các bản tin này được truyền tới các tổng đài khác qua mạng báo hiệu SS7. Với bất kỳ cuộc gọi nào, SSP có thể tạo các bản tin báo hiệu để gửi thông tin liên quan tới cuộc gọi tới các SSP khác, hoặc gửi truy vấn tới cơ sở dữ liệu SCP để thực thi việc định tuyến cuộc gọi. Điểm chuyển tiếp báo hiệu: (STP – Signalling Transfer Point) STP có chức năng chính là chuyển tiếp các bản tin báo hiệu (hay chức năng định tuyến báo hiệu). STP là một bộ chuyển mạch gói hoạt động như một Hub trong mạng truyền dữ liệu để gửi các bản tin báo hiệu tới các STP, SCP, hay SSP khác. STP định tuyến các bản tin thông qua việc kiểm tra thông 31
  32. tin định tuyến được gắn kèm với mỗi bản tin báo hiệu và gửi chúng tới điểm báo hiệu cần thiết. Điểm điều khiển dịch vụ báo hiệu: (SCP – Service Control Point) SCP là một tập hợp các cơ sở dữ liệu lưu giữ thông tin cần thiết để cung cấp các dịch vụ phức tạp hơn so với điều khiển cuộc gọi cơ bản (ví dụ cung cấp dịch vụ gia tăng, các dịch vụ tổng đài 1800). 2.3.4.2 Cấu trúc hệ thống SS7 Cũng giống như mô hình OSI, kiến trúc mạng của SS7 cũng được phân lớp. Tuy nhiên, trong khi mô hình OSI gồm có 7 lớp thì mô hình SS7 chỉ được phân chia thành 4 tầng và mỗi tầng đảm nhiệm những chức năng riêng biệt. Ba lớp thấp nhất tạo thành các phân lớp MTP1, MTP2, MTP3 chuyển giao bản tin cho phần điều khiển (phần User) của nó. 7. Ứng dụng I TCAP 6. Trình diễn T S U U 5. Phiên P P 4. Giao vận SCCP 3. Mạng MTP - 3 2.Liên kết dữ liệu MTP - 2 1. Vật lý MTP - 1 Hình 2.9 Mô hình OSI và tập giao thức SS7 32
  33. Phần chuyển giao bản tin báo hiệu MTP - MTP1: Tương đương với lớp vật lý (lớp 1 của mô hình OSI). Xác định các đường liên kết báo hiệu của mạng báo hiệu SS7. Nó xác định các đặc tính vật lý, đặc tính điện và các đặc tính chức năng của đường số liệu báo hiệu. Nó cung cấp các đường truyền dẫn song công, có thể hoạt động trên cả hai hướng thuận và ngược với cùng một tốc độ truyền. Kênh truyền dẫn báo hiệu có thể là kênh số hoặc kênh tương tự. Kênh số là những kênh có tốc độ cơ bản là 64Kbps cùng với các chuyển mạch số. Kênh tương tự dựa trên tần số thoại (4KHz) và các Modem. - MTP2: Tương đương với lớp liên kết dữ liệu trong mô hình OSI. Xác định chức năng và thủ tục để đảm bảo các bản tin có thể được truyền qua các đường liên kết báo hiệu. MTP2 cung cấp các chức năng phát hiện, sửa lỗi, khi phát hiện lỗi trên đường truyền thì thực hiện việc truyền lại và phân phát tuần tự các gói tin trên mạng. Cũng như mô hình OSI, lớp này chỉ liên quan đến việc truyền dẫn các bản tin từ trạm này đến trạm tiếp theo trong mạng mà không liên quan đến việc định tuyến các gói tin trên mạng. - MTP3: Tương đương với lớp mạng trong mô hình OSI. Lớp 3 cung cấp các chức năng xử lý bản tin và quản trị mạng. Chức năng xử lý bản tin là những chức năng định tuyến, phân loại, điều khiển lưu lượng, và phân phối bản tin. Chức năng quản trị mạng gồm các chức năng quản trị kênh, quản trị lưu lượng và định tuyến. Trong đó chức năng quan trọng nhất của MTP3 là định tuyến các bản tin báo hiệu. Để đảm bảo khả năng báo hiệu cho tất cả các dịch vụ thoại và phi thoại. Phần chuyển giao bản tin MTP của hệ thống báo hiệu SS7 được thiết kế để truyền các bản tin TUP (Telephone User Part – Phần người dùng điện thoại) và sau đó là truyền các bản tin ISUP (Integrated Service User Part – 33
  34. Phần ứng dụng ISDN) giữa các tổng đài. Phần điều khiển kết nối báo hiệu SCCP kết hợp cùng với MTP được hiểu như là phần dịch vụ mạng (NSP – Network Service Part) của SS7, và nó tương đương với các lớp 1,2,3 của mô hình OSI. Phần điều khiển kết nối báo hiệu SCCP (Signalling Connection Control Part) SCCP cung cấp các dịch vụ mạng hướng liên kết và không liên kết: - Truyền dẫn hướng liên kết: (truyền dẫn có định hướng kết nối): là khả năng chuyển giao bản tin báo hiệu qua kết nối đã được thiết lập từ trước (một đường thiết lập về mặt logic). Kết nối này có thể là tạm thời hay vĩnh viễn. Có thể mô tả dịch vụ này như sau: Ban đầu gửi một gói tin làm nhiệm vụ hoa tiêu qua mạng và đi đến nơi nhận. Gói hoa tiêu này sẽ tìm ra và thiết lập một đường đi thành công xuyên qua mạng, các bản tin báo hiệu sau đó sẽ đi theo đường này. Vì vậy người ta gọi đây là kiểu định hướng theo kiểu mạch ảo. - Truyền dẫn hướng không liên kết: (truyền dẫn không định hướng kết nối): Tức là không có kết nối logic được thiết lập, nên cũng không có giải phóng kết nối, mà chỉ có giai đoạn truyền số liệu. Mỗi gói được trang bị một địa chỉ và phải tự tìm ra đường tới đích, tất cả các thông tin cần thiết cho việc định tuyến tới điểm báo hiệu thu đều được lưu trong các gói số liệu. Như vậy ta thấy chúng sẽ không đi theo một đường mà luôn luôn tới không theo thứ tự đúng. Nhưng vì chúng có một số thứ tự nên ở điểm thu chúng được sắp xếp lại theo thứ tự ban đầu. SCCP phối hợp với MTP tạo nên phần dịch vụ mạng NSP (Network Service Part) tương ứng với lớp mạng trong mô hình OSI. SCCP cung cấp tất cả chức năng của lớp mạng mà các chức năng này không được đề cập đến ở phần MTP, ví dụ việc đánh địa chỉ và việc kết nối. 34
  35. Phần ứng dụng khả năng giao dịch TCAP (Transaction Capabilities Application Part) TCAP là phần người sử dụng của phần điều khiển kết nối báo hiệu (SCCP), nó sử dụng phương thức chuyển giao bản tin không kết nối. Mục đích của TCAP là cung cấp một hệ thống chung và tổng quát cho việc truyền thông tin giữa hai nút. Nó đảm nhiệm nhiều loại ứng dụng khác nhau và hữu ích ở các tổng đài và các trung tâm đặc biệt trong mạng viễn thông. TCAP tương tự như lớp 7 (lớp ứng dụng) trong mô hình OSI. Các ứng dụng có sử dụng TCAP: - Các ứng dụng của dịch vụ di động. - Các dịch vụ điện thoại miễn phí. - Gọi bằng thẻ tín dụng. - Các ứng dụng khai thác bảo dưỡng. Phần ngƣời sử dụng ISDN (ISUP – ISDN User Part) Là một giao thức cho điều khiển cuộc gọi và các thủ tục bảo dưỡng trung kế trong cả hai mạng: mạng thoại và mạng ISDN. ISUP xác định giao thức sử dụng để thiết lập quản lý và giải phóng các đường trung kế, những trung kế mang cả thoại và dữ liệu giữa các tổng đài số. ISUP cung cấp các chức năng cho cả phần người dùng điện thoại TUP (Telephone User Part) và người dùng số liệu DUP (Data User Part). Phần ngƣời dùng điện thoại TUP (Telephone User Part) Phần người dùng điện thoại được sử dụng để thiết lập, duy trì và giải phóng cuộc gọi. TUP điều khiển cuộc gọi trong tổng đài điện thoại bằng cách trao đổi báo hiệu với các tổng đài khác. Tuy nhiên, do TUP có nhiều hạn chế mà ngày nay giao thức không còn được sử dụng nữa mà thay bằng ISUP. 35
  36. 2.4 CHUYỂN MẠCH MỀM – SOFTSWITCH 2.4.1 Chuyển mạch mềm theo quan điểm của một số nhà phát triển Công nghệ chuyển mạch mềm gắn liền với sự ra đời của mạng NGN. Vậy công nghệ chuyển mạch mềm – Softswitch là gì? Đây là một câu hỏi đã được rất nhiều nhà phát triển đặt ra. Có thể nói rằng mỗi nhà phát triển nhìn Softswitch dưới một góc độ khác nhau. Dưới đây là các định nghĩa về Softswitch của một số nhà phát triển: Theo Nortel, Softwitch là một thành tố quan trọng nhất của mạng thế hệ mới (NGN). Theo Nortel định nghĩa thì Softwitch là một phần mềm theo mô hình mở có thể thực hiện được những chức năng thông tin phân tán trên một môi trường máy tính mở và có những tính năng của mạng chuyển mạch thoại TDM truyền thống. Chuyển mạch mềm có thể tích hợp thông tin thoại, số liệu và video, nó có thể phiên dịch giao thức giữa các mạng khác nhau. Theo Mobile IN, Softwitch là ý tưởng về việc tách phần cứng mạng ra khỏi phần mềm mạng. Theo Alcatel, Softswitch là trung tâm điều khiển trong cấu trúc mạng viễn thông. Nó cung cấp khả năng chuyển tải thông tin một cách mềm dẻo, an toàn và đáp ứng được các đặc tính mong đợi khác của mạng. Đó là sản phẩm có chức năng quản lý dịch vụ, điều khiển cuộc gọi. Hơn nữa, Softswitch còn có khả năng tương thích giữa các chức năng điều khiển cuộc gọi và các chức năng mới sẽ phát triển sau này. Như vậy, Softswitch là trung tâm chuyển mạch có đầy đủ chức năng của chuyển mạch truyền thống và tương thích được với các chức năng mới, sử dụng các công nghệ sẵn có cũng như các công nghệ mới. Theo CopperCom, Softswitch là tên gọi dùng cho một phương pháp tiếp cận mới trong chuyển mạch thoại có thể giúp giải quyết được các thiếu sót của các chuyển mạch trong các tổng đài nội hạt truyền thống. Công nghệ Softswitch có thể làm giảm giá thành của các chuyển mạch nội hạt, và cho ta 36
  37. một công cụ hữu hiệu để tạo ra sự khác biệt về dịch vụ giữa các nhà cung cấp dịch vụ và đơn giản hóa quá trình dịch chuyển từ mạng truyền thống sang mạng hỗ trợ thoại gói từ đầu cuối – đến – đầu cuối (end – to – end) trong tương lai. Ngành công nghiệp viễn thông dường như đã đạt được một sự nhất trí rằng câu trả lời tốt nhất là tách chức năng xử lý cuộc gọi ra khỏi thiết bị chuyển mạch vật lý, và kết nối hai thành phần này với nhau thông qua một loạt các giao thức chuẩn. Trong đó chức năng chuyển mạch vật lý – tạo các kết nối cho trao đổi thông tin – do mạng cơ sở hạ tầng đảm nhiệm. Chức năng này trong các mạng chuyển mạch gói được thực hiện một cách phân tán trong toàn mạng. Còn phần điều khiển các kết nối (thiết lập, giải phóng và các tính năng liên quan) thì do một bộ phận trung tâm đảm nhiệm. Bộ phận này làm việc với các phần khác của mạng thông qua các giao thức chuẩn, do đó chức năng được thực hiện với một tập hợp các modul phần mềm. Có một số lý do mà theo đó người ta tin rằng việc phân chia hai chức năng là một giải pháp tốt: - Tạo cơ hội cho một số công ty nhỏ và linh hoạt vốn chỉ tập trung vào phần mềm xử lý cuộc gọi hoặc vào phần mềm chuyển mạch gói gây được ảnh hưởng trong ngành công nghiệp viễn thông giống như các nhà cung cấp lớn từ trước tới nay vẫn kiểm soát thị trường. - Cho phép có một giải pháp phần mềm chung đối với việc xử lý cuộc gọi. Và phần mềm này được cài đặt trên nhiều loại mạng khác nhau, bao gồm cả mạng chuyển mạch kênh và mạng gói (áp dụng được với các dạng gói và môi trường truyền dẫn khác nhau). - Là động lực cho các hệ điều hành, các môi trường máy tính chuẩn, tiết kiệm đáng kể trong việc phát triển và ứng dụng các phần mềm xử lý cuộc gọi. 37
  38. - Cho phép các phần mềm thông minh của các nhà cung cấp dịch vụ điều khiển từ xa thiết bị chuyển mạch đặt tại trụ sở của khách hàng, một yếu tố quan trọng trong việc khai thác tiềm năng của mạng tương lai. 2.4.2 Định nghĩa chuyển mạch mềm Chuyển mạch mềm có thể được định nghĩa như là tập hợp các sản phẩm, giao thức và các ứng dụng cho phép bất kỳ thiết bị nào truy cập các dịch vụ truyền thông qua mạng xây dựng trên nền công nghệ chuyển mạch gói thường là IP (Internet Protocol). Những dịch vụ đó bao gồm thoại, fax, video, dữ liệu và các dịch vụ mới có thể được phát triển trong tương lai. Những thiết bị đầu cuối truy nhập bao gồm: điện thoại truyền thống, điện thoại IP, máy tính, máy nhắn tin, Một sản phẩm Softswitch có thể bao gồm một hoặc nhiều phần chức năng, các chức năng có thể cùng nằm trên một hệ thống hoặc phân tán trên những hệ thống thiết bị khác nhau. Softswitch nhìn chung cung cấp các chức năng giống như các chức năng của hệ thống chuyển mạch kênh, nó chỉ khác là được thiết kế cho chuyển mạch gói và có khả năng liên kết với mạng PSTN. Các tính chất khác biệt của một hệ thống chuyển mạch mềm bao gồm: - Là hệ thống có khả năng lập trình để xử lý cuộc gọi và hỗ trợ các giao thức của mạng PSTN, ATM và IP. - Hoạt động trên nên các máy tính và các hệ điều hành thương mại. - Điều khiển các Gateway trung kế ngoài (External Trunking Gateway), Gateway truy cập (Access Gateway) và các Server truy nhập từ xa RAS (Remote Access Server). - Nó tái sử dụng các dịch vụ IN thông qua giao diện danh bạ mở, mềm dẻo. - Cung cấp các giao diện lập trình ứng dụng mở API cho các nhà phát triển thứ 3 nhằm tạo ra các dịch vụ thế hệ sau. 38
  39. - Nó có chức năng lập trình cho các hệ thống Back office. - Có hệ thống quản lý tiên tiến trên cơ sở máy chủ cho tất cả các module phần mềm. Một đặc điểm nữa của Softswitch là Softswitch không phải làm nhiệm vụ cung cấp kênh kết nối như tổng đài vì liên kết thông tin đã được cơ sở hạ tầng mạng NGN thực hiện theo các công nghệ chuyển mạch gói. Tức là công nghệ chuyển mạch mềm không thực hiện bất cứ “chuyển mạch” gì. Tất cả các công việc của Softswitch được thực hiện với một hệ thống các module phần mềm điều khiển và giao tiếp với các phần khác của mạng NGN, chạy trên một hệ thống máy chủ có hiệu năng, độ tin cậy và độ sẵn sàng ở cấp độ nhà cung cấp dịch vụ. 2.4.3 Vị trí của Softswitch Do có chức năng là xử lý cuộc gọi (Call control) nên vị trí tương ứng của Softswitch trong mô hình phân lớp chức năng của NGN là lớp điều khiển cuộc gọi và báo hiệu (Call control and Signaling Layer). Softswitch Lớp ứng dụng Lớp điều khiển Lớp truyền thông Lớp truyền dẫn và truy nhập Hình 2.10 Vị trí của Softswitch 39
  40. 2.4.4 Thành phần chính của Softswitch Thành phần chính của chuyển mạch mềm là bộ điều khiển cổng thiết bị Media Gateway Controller (MGC). Bên cạnh đó còn có các thành phần khác hỗ trợ hoạt động như: Signalling Gateway (SG), Media Gateway (MG), Media Server (MS), Application Server (AS)/Feature Server (FS) như hình 2.11. Hình 2.11 Thành phần chính của Softswitch 40
  41. Và sơ đồ kết nối và giao thức sử dụng giữa các thành phần ở trên được mô tả như hình 2.12: Server tính năng/ Server ứng dụng phương tiện SIP SIP ENUM/TRIP MGCP Bộ điều khiển SIP Bộ điều khiển SIP Bộ điều khiển cổng phương tiện cổng phương tiện cổng phương tiện SIGTRAN Megaco MGCP Cổng báo hiệu Cổng phương tiện PSTN Các mạng SS7 khác (Không TDM/ATM Mạng IP phải IP) Hình 2.12 Kết nối MGC với các thành phần khác của NGN Một Media Gateway Controller có thể quản lý nhiều Media Gateway. Hình trên chỉ minh họa 1 MGC quản lý 1 MG. Và một Media Gateway có thể nối đến nhiều loại mạng khác nhau. 2.4.5 Khái quát hoạt động của Softswitch Ở đây chỉ xét trường hợp thuê bao gọi đi là một thuê bao thuộc mạng cung cấp dịch vụ thoại truyền thống PSTN. Các trường hợp khác thì hoạt động của chuyển mạch mềm Softswitch cũng sẽ tương tự. Hoạt động của phần mềm này bao gồm các bước sau: 1. Khi có một thuê bao nhấc máy (thuộc PSTN) và chuẩn bị thực hiện cuộc gọi thì tổng đài nội hạt quản lý thuê bao đó sẽ nhận biết trạng thái 41
  42. off-hook của thuê bao. Và Signaling Gateway (SG) nối với tổng đài này thông qua mạng SS7 cũng nhận biết được trạng thái mới của thuê bao. 2. SG sẽ báo cho MGC trực tiếp quản lý mình thông qua CA-F đồng thời cung cấp tín hiệu dial-tone cho thêu bao. Ta gọi MGC này là Caller-MGC. 3. Caller-MGC gửi yêu cầu tạo kết nối đến Media Gateway (MG) nối với tổng đài nội hạt ban đầu nhờ MGC-F. 4. Các số do thuê bao nhấn sẽ được SG thu nhập và chuyển tới Caller- MGC. 5. Caller-MGC sử dụng những số này để quyết định công việc tiếp theo sẽ thực hiện. Các số này sẽ được chuyển tới chức năng R-F và R-F sử dụng thông tin lưu trữ của các server để có thể định tuyến cuộc gọi. Trường hợp đầu cuối đích cùng loại với đầu cuối gọi đi (nghĩa là cũng là một thuê bao của mạng PSTN): nếu thuê bao bị gọi cũng thuộc sự quản lý của Caller-MGC thì thực hiện bước 7. Nếu thuê bao này thuộc sự quản lý của một MGC khác thì thực hiện bước 6. Còn nếu thuê bao này là một đầu cuối khác loại thì MGC sẽ đồng thời kích hoạt chức năng IW-F để khởi động bộ điều khiển tương ứng và chuyển cuộc gọi đi. Lúc này thông tin báo hiệu sẽ được một loại Gateway khác xử lý. Và quá trình truyền thông tin sẽ diễn ra tương tự như kết nối giữa 2 thuê bao thoại thông thường. 6. Caller-MGC sẽ gởi yêu cầu thiết lập cuộc gọi đến một MGC khác. Nếu chưa đến đúng MGC của thuê bao bị gọi (ta gọi là Callee-MGC) thì MGC này sẽ tiếp tục chuyển yêu cầu thiết lập cuộc gọi đến MGC khác cho đến khi đến đúng Callee-MGC. Trong quá trình này, các MGC trung gian luôn phản hồi lại MGC đã gởi yêu cầu đến nó. Các công việc này được thực hiện bởi CA-F. 42
  43. 7. Callee-MGC (Caller-MGC) gởi yêu cầu tạo kết nối với MG nối với tổng đài nội hạt của thuê bao bị gọi (Callee-MG). 8. Đồng thời Callee-MGC gởi thông tin đến Callee-SG, thông qua mạng SS7 sẽ làm rung chuông thuê bao bị gọi. 9. Khi Callee-SG nhận được bản tin báo trạng thái của thuê bao bị gọi (giả sử là rỗi) thì nó sẽ gởi ngược thông tin này trở về Callee-MGC. 10. Và Callee-MGC sẽ phản hồi về Callee-MGC để báo mình đang liên lạc với người được gọi. 11. Callee-MGC gởi thông tin để cung cấp tín hiệu Ring-back-tone cho Callee-MGC, qua Callee-SG đến người gọi. 12. Khi thuê bao bị gọi nhấc máy thì quá trình thông báo tương tự các bước trên xảy ra: qua nút báo hiệu số 7, thông tin nhấc máy qua Callee- SG đến Callee-MGC, rồi đến Caller-MGC, qua Caller-SG rồi đến thuê bao thực hiện cuộc gọi. 13. Kết nối giữa thuê bao gọi đi và thuê bao bị gọi được hình thành thông qua Caller-MG và Callee-MG. 14. Khi chấm dứt cuộc gọi thì quá trình sẽ diễn ra tương tự như lúc thiết lập 43
  44. Hình 2.13 Quá trình thực hiện một cuộc gọi khi sử dụng chuyển mạch mềm 44
  45. Các mã bản tin báo hiệu: IAM: (Initial Address Message): Bản tin địa chỉ khởi đầu chứa các thông tin cần thiết cho việc định tuyến và chiếm kênh đến tổng đài kết cuối. Bản tin này thường chứa số thuê bao bị gọi. ACM: (Address Complete Message): Bản tin địa chỉ hoàn thành, được gửi từ tổng đài kết cuối để xác nhận hoàn thành việc nhận các thông tin địa chỉ từ phía tổng đài chủ gọi. ANM:( Answer Message): Bản tin trả lời, thông báo cho tổng đài chủ biết rằng thêu bao bị gọi đã nhấc máy, và sau bản tin này tổng đài chủ gọi bắt đầu tính cước cuộc gọi. CRCX: (Create Connection): Là lệnh từ MGC truyền đến MG yêu cầu tạo kết nối giữa các đầu cuối. MDCX: (Modify Connection): Lệnh truyền từ MGC đến MG. Lệnh này được sử dụng khi đặc tính kết nối cần thay đổi (thay đổi các tham số trong một kết nối đã được mở trước đó). INVITE: Thiết lập phiên. 18x: Phản hồi chuông cho thuê bao chủ gọi. 200: Đáp ứng thành công cho một yêu cầu bản tin INVITE. ACK: Những yêu cầu này tương ứng với một yêu cầu INVITE. Chúng là sự xác nhận cuối cùng từ một hệ thống cuối và chấm dứt một giao dịch được khởi tạo bởi INVITE. 2.5 CÁC CÔNG NGHỆ LÀM NỀN CHO NGN Các công nghệ phổ biến như: IP, ATM, IP/ATM, MPLS. 2.5.1 IP (Internet Protocol – giao thức liên mạng) IP là giao thức chuyển tiếp gói tin. Việc chuyển tiếp gói tin thực hiện theo cơ chế phi kết nối không sử dụng các bản tin báo hiệu để thiết lập kết nối, phương thức chuyển tin là chuyển theo từng chặng một. 45
  46. IP định nghĩa cơ cấu đánh số, cơ cấu chuyển tin, cơ cấu định tuyến và các chức năng điều khiển ở mức thấp (ICMP). Gói tin IP gồm địa chỉ của bên nhận, địa chỉ là số duy nhất trong toàn mạng và mang đầy đủ thông tin cần cho việc chuyển gói tới đích. Cơ cấu định tuyến có nhiệm vụ tính toán đường đi tới các nút trong mạng. Do vậy, cơ cấu định tuyến phải được cập nhập các thông tin về topo mạng, thông tin về nguyên tắc chuyển tin và nó phải có khả năng hoạt động trong môi trường mạng gồm nhiều nút. Kết quả tính toán của cơ cấu định tuyến được lưu trong các bảng chuyển tin chứa thông tin về chặng tiếp theo để có thể gửi gói tin tới hướng đích. Tất cả các gói tin được chuyển đi dựa trên các giao thức định tuyến lớp mạng (như giao thức tìm đường dẫn ngắn nhất [OSPF] hay giao thức cổng biên [BGP], hay định tuyến tĩnh. Các router xử lý tất cả các gói tin như nhau và có quyền hủy bỏ các gói tin mà không cần bất kỳ thông báo nào cho cả bên gửi và bên nhận. Chính vì vậy, giao thức IP cung cấp một dịch vụ gửi dữ liệu không đảm bảo (còn gọi là cố gắng cao nhất) nghĩa là nó hầu như không đảm bảo gì về gói dữ liệu. Cơ chế phi kết nối gây khó khăn trong việc điều khiển luồng và phân bổ lưu lượng mạng, làm tắc nghẽn tại các nút mạng. Các nhà cung cấp dịch vụ Internet (ISP) xử lý bằng cách tăng dung lượng các kết nối và nâng cấp router nhưng hiện tượng nghẽn mạch vẫn xảy ra. Lý do là các định tuyến Internet thường hướng lưu lượng vào cùng một số các kết nối nhất định dẫn tới các kết nối này bị quá tải trong khi một số khu vực khác tài nguyên không được sử dụng. Đây là tình trạng phân bổ không đồng đều và sử dụng lãng phí tài nguyên mạng. Tuy nhiên, bên cạnh hạn chế như vậy, mô hình phi kết nối cũng có những ưu điểm, đó là: - Khả năng định tuyến gói tin một cách độc lập. 46
  47. - Cơ cấu định tuyến và chuyển tin đơn giản, hiệu quả, nên mô hình phi kết nối rất phù hợp với các luồng có thời gian kết nối chậm. 2.5.2 ATM (Asynchronous Transfer Mode – Chế độ truyền không đồng bộ) ATM hoạt động ở lớp 2 của OSI. ATM là hệ thống chuyển mạch gói tiên tiến, có thể truyền đồng thời dữ liệu, âm thanh và hình ảnh số hoá trên cả mạng LAN và mạng WAN. Đây là một trong những phương pháp kết nối mạng WAN tốc độ lớn, tốc độ đạt từ 155 Mbit/s đến 622 Mbit/s. Trên thực tế, theo lý thuyết nó có thể hỗ trợ tốc độ cao hơn khả năng hiện thời của các phương tiện truyền dẫn hiện nay. Tuy nhiên, tốc độ cao có nghĩa là chi phí cũng cao hơn. ATM là công nghệ chuyển mạch hướng kết nối, tức là kết nối từ điểm đầu đến điểm cuối phải được thiết lập trước khi thông tin được gửi đi. Việc tạo kết nối mạch ảo có thể đạt hiệu quả trong mạng nhỏ, nhưng đối với mạng lớn thì những vấn đề có thể xảy ra: Mỗi khi một router mới đưa vào mạng lõi WAN thì mạch ảo phải được thiết lập giữa router này với các router còn lại để đảm bảo việc định tuyến tối ưu. Điều này làm cho lưu lượng định tuyến trong mạng tăng. Thông thường việc thiết lập kết nối này được thực hiện bởi giao thức báo hiệu. Giao thức này cung cấp các thông tin trạng thái liên quan đến việc kết nối cho các chuyển mạch nằm trên đường đã định tuyến. Chức năng điều khiển chấp nhận kết nối CAC (Connection Admission Control) đảm bảo rằng các tài nguyên liên quan đến kết nối hiện tại sẽ không được đưa vào để sử dụng cho các kết nối mới. Điều này buộc mạng phải duy trì trạng thái của từng kết nối (bao gồm thông tin về sự tồn tại của kết nối và tài nguyên mà kết nối đó sử dụng) tại các nude có dữ liệu đi qua. Nhờ đó mà môi trường hướng kết nối có thể đảm bảo chất lượng cho từng luồng thông tin. Mạng sẽ giám sát 47
  48. từng kết nối, thực hiện định tuyến lại trong trường hợp có sự cố và việc thực hiện định tuyến lại này cũng phải thông qua báo hiệu. Từ cơ chế truyền tin ta thấy mạng hướng kết nối thích hợp với: - Các ứng dụng yêu cầu phải đảm bảo QoS một cách nghiêm ngặt. - Các ứng dụng có thời gian kết nối lớn. Đối với các ứng dụng có thời gian kết nối ngắn thì môi trường hướng kết nối dường như lại không thích hợp do thời gian để thiết lập kết nối cũng như tỉ lệ phần thông tin header lại quá lớn. Với các loại lưu lượng như vậy thì môi trường phi kết nối với phương thức định tuyến đơn giản, tránh phải sử dụng các giao thức báo hiệu phức tạp sẽ phù hợp hơn. Như vậy cần tìm một phương thức chuyển mạch có thể phù hợp ưu điểm của IP (như cơ cấu định tuyến) và của ATM (như phương thức chuyển mạch) và để thực sự phù hợp với mạng đa dịch vụ cả hai công nghệ ATM và IP đều phải có những thay đổi cụ thể là đưa thêm khả năng phi kết nối vào công nghệ ATM, và khả năng hướng kết nối vào công nghệ IP. 2.5.3 IP/ATM IP over ATM truyền thống là một loại kỹ thuật kiểu xếp chồng, nó xếp IP (kỹ thuật lớp 3) lên ATM (kỹ thuật lớp 2); giao thức của hai tầng hoàn toàn độc lập với nhau; giữa chúng phải nhờ một loạt giao thức (như NHRP, ARP, ) nữa mới đảm bảo nối thông. Tuy nhiên, IP và ATM là hai công nghệ hoàn toàn khác nhau, được thiết kế cho những môi trường mạng khác nhau, khác nhau về giao thức, cách đánh địa chỉ, định tuyến, báo hiệu, phân bổ tài nguyên. Khi các ISP càng mở rộng mạng theo hướng IP over ATM, họ càng nhận rõ nhược điểm của mô hình này, đó là sự phức tạp của mạng lưới do phải duy trì hoạt động của hai hệ thống thiết bị cụ thể: - Do áp dụng phương pháp xếp chồng nên phải thiết lập các liên kết PVC tại N điểm nút, tức là cần thiết lập mạng liên kết. Như thế có thể sẽ gây 48
  49. nên vấn đề bình phương N, rất phiền phức, tức là khi thiết lập, bảo dưỡng, gỡ bỏ sự liên kết giữa các điểm nút, số việc phải làm đều có cấp số nhân bình phương của N điểm nút. Khi mà mạng lưới ngày càng rộng lớn, chi phối kiểu đó sẽ làm mạng quá tải. - Phương thức xếp chồng sẽ cắt cả mạng lưới IP over ATM ra làm nhiều mạng logic nhỏ (LIS), các LIS trên thực tế đều ở trong một mạng vật lý. Giữa các LIS dùng bộ định tuyến trung gian để liên để liên kết, điều này sẽ ảnh hưởng đến việc truyền nhóm gói tin giữa các LIS khác nhau. Mặt khác, khi lưu lượng rất lớn, những bộ định tuyến này sẽ gây hiện tượng nghẽn cổ chai đối với băng rộng. - Trong phương thức xếp chồng, IP over ATM vẫn không có cách nào đảm bảo QoS thực sự. Từ những nhược điểm trên làm cho IP over ATM chỉ có thể dùng thích hợp cho mạng tương đối nhỏ, như mạng xí nghiệp, nhưng không thể đáp ứng được nhu cầu của mạng đường trục Internet trong tương lai. Sự bùng nổ của mạng Internet dẫn tới xu hướng hội tụ các mạng viễn thông khác như mạng thoại, truyền hình dựa trên Internet, giao thức IP trở thành giao thức chủ đạo trong lĩnh vực mạng. Xu hướng của các ISP là thiết kế và sử dụng các bộ định tuyến chuyên dụng, dung lượng chuyển tải lớn, hỗ trợ các giải pháp tích hợp, chuyển mạch đa lớp cho mạng trục Internet. Nhu cầu cấp thiết trong bối cảnh này là phải ra đời một công nghệ có khả năng kết hợp những đặc điểm tốt của chuyển mạch kênh ATM và chuyển mạch gói IP. Công nghệ MPLS (Multiprotocol Label Switching) ra đời trong bối cảnh này đáp ứng được nhu cầu của thị trường đúng theo tiêu chí phát triển của Internet đã mang lại những lợi ích thiết thực, đánh dấu một bước phát triển mới của mạng Internet trước xu thế tích hợp công nghệ thông tin và viễn thông (ICT - Information Communication Technology) trong thời kỳ mới. 49
  50. 2.5.4 MPLS (Multi Protocol Label Switching – Chuyển mạch nhãn đa giao thức) Chuyển mạch nhãn đa giao thức (MPLS) là kết quả của quá trình phát triển nhiều giải pháp chuyển mạch IP, được chuẩn hoá bởi IETF. Tên gọi của nó bắt nguồn từ thực tế đó là hoán đổi nhãn được sử dụng như là kỹ thuật chuyển tiếp nằm ở bên dưới. Sự sử dụng từ “đa giao thức” trong tên của nó có nghĩa là nó có thể hỗ trợ nhiều giao thức lớp mạng, không chỉ riêng IP. Ngoài ra các nhà cung cấp mạng có thể cấu hình và chạy MPLS trên các công nghệ lớp 2 khác nhau như PPP, Fram Relay chứ không chỉ riêng ATM. Về mặt kiến trúc điều này là đúng, nhưng trong thực tế MPLS thường tập trung vào việc vận chuyển các dịch vụ IP trên ATM. MPLS là giải pháp nhằm liên kết định tuyến lớp mạng và cơ chế hoán đổi nhãn thành một giải pháp đơn nhất để đạt được các mục tiêu sau: - Cải thiện hiệu năng định tuyến; - Cải thiện tính mềm dẻo của định tuyến trên các mô hình xếp chồng truyền thống; - Tăng tính mềm dẻo trong quá trình đưa vào ứng dụng và phát triển các loại hình dịch vụ mới. Mạng MPLS có khả năng chuyển các gói tin tại lớp 3 bằng việc xử lý từng gói và chuyển tiếp gói tin tại lớp 2 sử dụng cơ chế hoán đổi nhãn. MPLS dựa trên mô hình ngang cấp, vì vậy mỗi một thiết bị MPLS chạy một giao thức định tuyến IP, trao đổi thông tin định tuyến với các thiết bị lân cận, và chỉ duy trì một không gian cấu hình mạng và một không gian địa chỉ. MPLS chia bộ định tuyến làm hai phần riêng biệt: chức năng chuyển gói tin và chức năng điều khiển. Phần chức năng chuyển gói tin sử dụng cơ chế hoán đổi nhãn. Kỹ thuật hoán đổi nhãn về bản chất là việc tìm chặng kế tiếp của gói tin trong một bảng chuyển tiếp nhãn, sau đó thay thế giá trị nhãn của gói rồi chuyển ra cổng ra của bộ định tuyến. Việc này đơn giản hơn nhiều 50
  51. so với việc xử lý gói tin thông thường và do vậy tăng cường khả năng của thiết bị. Các bộ định tuyến sử dụng thiết bị này gọi là bộ định tuyến chuyển mạch nhãn (LSR – Label Switch Router). Phần chức năng điều khiển của MPLS bao gồm các giao thức định tuyến lớp mạng với nhiệm vụ phân phối thông tin định tuyến giữa các LSR, và thủ tục gán nhãn để chuyển thông tin định tuyến thành bảng định tuyến chuyển mạch nhãn. MPLS có thể hoạt động được với các giao thức định tuyến Internet như OSPF và BGP hay PNNI của ATM. Do MPLS hỗ trợ việc điều khiển lưu lượng và cho phép thiết lập tuyến cố định nên việc đảm bảo chất lượng dịch vụ là hoàn toàn khả thi. Đây là chức năng vượt chội của MPLS so với các giao thức định tuyến khác. Tuy nhiên, do MPLS là công nghệ chuyển mạch định hướng kết nối nên khả năng bị ảnh hưởng bởi lỗi đường truyền là cao hơn các công nghệ khác. Bên cạch độ tin cậy, công nghệ MPLS cũng khiến việc quản lý mạng dễ dàng hơn. Do MPLS quản lý việc truyền tin theo các luồng tin, các gói tin thuộc một lớp chuyển tiếp tương đương FEC có thể được xác định bởi giá trị của nhãn. Do vậy trong miền MPLS các thiết bị đo lưu lượng mạng có thể dựa trên nhãn để phân loại gói tin. Bằng cách giám sát lưu lượng tại các LSR, nghẽn lưu lượng sẽ được phát hiện và vị trí xảy ra nghẽn có thể được xác định nhanh chóng, đây là một trong những điều kiện đảm bảo cho mạng MPLS có khả năng hỗ trợ QoS tốt nhất, vì vậy MPLS tạo ra các lợi ích cho các nhà cung cấp dịch vụ để quản lý lưu lượng và hỗ trợ những dịch vụ mới. MPLS có thể được nhìn nhận như một mặt bằng điều khiển trên ATM cho phép mở rộng phương pháp định tuyến và điều khiển lưu lượng IP. Có thể coi như là một phương pháp xây dựng các VC ATM, ngoại trừ các cuộc gọi MPLS là đường dẫn chuyển mạch nhãn LSP. Khi chạy trên phần cứng ATM, cả MPLS và forum ATM đều sử dụng cùng một khuôn dạng gói tin (53 byte), cùng nhãn (VPI/VCI), cùng một kỹ thuật dán nhãn cho tế bào chuyển mạch, cùng chức năng trên các thiết bị gờ mạng. Cả MPLS và ATM đều yêu cầu 51
  52. giao thức thiết lập kết nối (ví dụ giao thức phân bổ nhãn LDP cho MPLS, UNI/PNNI cho ATM). Bên cạch đó có một số điểm khác nhau cơ bản: MPLS không sử dụng địa chỉ ATM, định tuyến ATM và các giao thức trong forum ATM. Thay vào đó, MPLS sử dụng địa chỉ IP, định tuyến IP động, thêm vào đó là các giao thức điều khiển phân bổ nhãn LDP để sắp xếp các FEC vào trong LSP. Tóm lại công nghệ MPLS ra đời đáp ứng được nhu cầu của thị trường đúng theo tiêu chí phát triển của Internet, kết hợp những đặc điểm tốt nhất giữa định tuyến lớp thứ 3 và chuyển mạch lớp thứ 2 cho phép chuyển các gói rất nhanh trong mạng lõi và định tuyến tốt ở các mạng biên bằng cách dựa vào nhãn. 2.6 ỨNG DỤNG CỦA NGN Như đã trình đã trình bày mạng NGN là sự tập trung của ba loại mạng chính: Mạng PSTN, mạng di động và mạng chuyển mạch gói (mạng Internet) vào một kết cấu thống nhất để hình thành một mạng chung, thông minh, hiệu quả cho phép truy xuất toàn cầu, tích hợp nhiều công nghệ mới, ứng dụng mới. Từ đó tạo ra nhiều dịch vụ mới, nhờ đó mà các nhà cung cấp cũng có thể nhanh chóng tạo ra các nguồn thu mới. Xây dựng trên các thành phần mở và được module hóa, trên các giao thức chuẩn và các giao diện mở, NGN đã trở thành một phương tiện cho phép kết nối giữa con người và máy móc ở bất cứ khoảng cách nào. Nói cách khác, NGN có khả năng cung cấp các yêu cầu đặc biệt của tất cả khách hàng công ty, văn phòng ở xa, văn phòng nhỏ, nhà riêng, Nó hợp nhất thoại hữu tuyến và vô tuyến, dữ liệu, video, bằng cách sử dụng chung một lớp truyền tải gói. Các lớp dịch vụ của NGN linh hoạt, chi phí hiệu quả và có khả năng mở rộng hơn đối với các dịch vụ trước đây. Mục tiêu chính của dịch vụ NGN là cho phép khách hàng có thể lấy thông tin mà họ muốn ở bất kỳ dạng nào, trong bất kỳ điều kiện nào, tại mọi nơi và dung lượng tùy ý. 52
  53. Dưới đây là một số dịch vụ trong môi trường NGN : Hình 2.14 Một số dịch vụ NGN điển hình  Dịch vụ thoại (voice Telephony) Vẫn cung cấp các dịch vụ đã tồn tại như: chờ cuộc gọi, chuyển cuộc gọi, gọi ba bên, nhưng với công nghệ mới.  Dịch vụ dữ liệu (Data Service) Các dịch vụ dữ liệu có khả năng thiết lập kết nối theo băng thông và chất lượng dịch vụ QoS theo yêu cầu.  Dịch vụ đa phương tiện (Multimedia Service) Cho phép nhiều người tham gia tương tác với nhau qua thoại, video, dữ liệu. Các dịch vụ này cho phép khách hàng vừa nói chuyện vừa hiển thị thông tin. Ngoài ra, các máy tính còn có thể cộng tác với nhau.  Dịch vụ sử dụng mạng riêng ảo (VPN) Mạng riêng ảo hay VPN (viết tắt cho Virtual Private Network) là một mạng dành riêng để kết nối các máy tính của các công ty, tập đoàn hay các tổ chức với nhau thông qua mạng Internet công cộng. Sự ra đời của công nghệ mạng riêng ảo trên nền NGN đã cho phép các tổ chức doanh nghiệp có thêm sự lựa chọn mới, có được nhiều ứng dụng, giải pháp hữu ích trên mạng diện rộng WAN, với ưu điểm đơn giản chi phí thấp. 53
  54.  Thương mại điện tử (E-commerce) Cho phép khách hàng mua hàng hóa, dịch vụ được xử lý bằng điện tử trên mạng, bao gồm: việc xử lý tiến trình, kiểm tra thông tin thanh toán tiền, bảo mật, ngân hàng tại nhà, đi chợ tại nhà. Dịch vụ thương mại điện tử còn được mở rộng sang lĩnh vực di động. Đó chính là dịch vụ thương mại điện tử di động (M-commerce tức là Mobile commerce). Đây là loại dịch vụ cho phép người sử dụng tham gia vào thị trường thương mại điện tử (mua và bán) qua các thiết bị di động cầm tay.  Bản tin hợp nhất (Unified Messaging) Hỗ trợ cung cấp các dịch vụ voice mail, email, fax mail, pages qua các giao diện chung. Thông qua các giao diện này, người sử dụng sẽ truy nhập (cũng như được thông báo) tất cả các loại tin nhắn trên, không phụ thuộc vào hình thức truy nhập (hữu tuyến hay vô tuyến, máy tính, thiết bị dữ liệu vô tuyến). Đặc biệt kỹ thuật chuyển đổi lời nói sang file văn bản và ngược lại được thực hiện ở Server ứng dụng cần phải được sử dụng ở dịch vụ này.  Môi giới thông tin (Information Brokering) Bao gồm quảng cáo, tìm kiếm và cung cấp thông tin đến khách hàng tương ứng với nhà cung cấp  Các dịch vụ chuyển cuộc gọi (Call Center Service) Một thuê bao có thể chuyển một cuộc gọi thông thường đến trung tâm phân phối cuộc gọi bằng cách kích chuột trên một trang web. Cuộc gọi có thể xác định đường đến một Agent thích hợp, mà nó có thể nằm bất cứ đâu thậm chí cả ở nhà (như trung tâm cuộc gọi ảo – Vitual Call Centrel). Các cuộc gọi thoại cũng như các tin nhắn email có thể được xếp hàng giống nhau đến các Agent. Các Agent có các truy nhập điện tử đến các khách hàng, danh mục, nguồn cung cấp và thông tin yêu cầu đến, có thể được truyền qua lại giữa các khách hàng và Agent. 54
  55.  Trò chơi tương tác trên mạng (Interactive Gaming) Cung cấp cho khách hàng một phương thức gặp nhau trực tuyến và tạo ra các trò chơi tương tác (chẳng hạn như Video Games)  Quản lý tại nhà (Home Manager) Với sự ra đời của các thiết bị mạng thông minh, các dịch vụ này có thể giám sát và điều khiển các hệ thống bảo vệ tại nhà, các hệ thống đang hoạt động, các hệ thống giải trí, và các công cụ khác tại nhà. Giả sử như chúng ta đang xem ti vi và có chuông cửa, không vấn đề gì cả, ta chỉ việc sử dụng điều khiển ti vi từ xa để xem được trên màn hình ai đang đứng trước cửa nhà mình. Hoặc chẳng hạn như chúng ta có thể quan sát được ngôi nhà của mình trong khi đang đi xa,  Dịch vụ hội nghị truyền hình Dịch vụ truyền hình hội nghị là dịch vụ truyền dẫn tín hiệu, hình ảnh, âm thanh, giữa hai hoặc nhiều điểm khác nhau. Dịch vụ cho phép nhiều người tham dự tại các địa điểm có thể trao đổi trực tiếp bằng âm thanh, hình ảnh qua màn hình và loa. Hệ thống truyền hình hội nghị còn cung cấp nhiều tiện ích khác cho người sử dụng như: kết nối với máy tính để trình chiếu văn bản, kết nối với hệ thống âm thanh ngoài, các thiết bị lưu trữ (đầu ghi băng từ, đĩa quang VCD, DVD hoặc ổ cứng) để lưu trữ những phiên hội thảo quan trọng. Dịch vụ truyền hình hội nghị là công cụ hiệu quả, hữu ích trong công tác đào tạo, giảng dạy hoặc trợ giúp y tế từ xa. 55
  56. Chƣơng 3 CHIẾN LƢỢC PHÁT TRIỂN NGN CỦA NGÀNH VIỄN THÔNG VIỆT NAM 3.1 CHIẾN LƢỢC PHÁT TRIỂN NGN CỦA NGÀNH VIỄN THÔNG VIỆT NAM Trong các chương trước đã trình bày về mạng viễn thông thế hệ sau NGN và việc chuyển đổi từ mạng hiện tại lên mạng NGN là một điều tất yếu. Chương này sẽ trình bày chiến lược phát triển mạng NGN của chính ngành viễn thông Việt Nam. Việc xây dựng tùy thuộc vào tình hình mạng cụ thể và quan điểm của nhà khai thác. Ở đây ta xét 2 quan điểm: xây dựng trên cơ sở mạng hiện tại và xây dựng hoàn toàn mới. Tùy vào hiện trạng của mạng hiện tại và quan điểm của nhà khai thác mà giải pháp thích hợp sẽ được ứng dụng. Trước hết sẽ xét 2 quan điểm trên dựa vào yếu tố sự phát triển mạng và phát triển dịch vụ qua các hình sau: Các dịch vụ Các dịch vụ phát triển tiếp phát triển tiếp theo của mạng theo của mạng ụ hiện tại thế hệ sau ch v ch ị nd ể pháttri Các dịch vụ ự S hiện nay của mạng hiện tại Sự phát triển mạng Hình 3.1 Xu hướng phát triển mạng và dịch vụ theo quan điểm dựa trên cơ sở mạng hiện tại 56
  57. Các dịch vụ phát triển tiếp theo của mạng thế hệ sau ch ch ị nd ể pháttri ự ụ Các dịch vụ Các dịch vụ S v của mạng thế hiện nay của mạng hiện tại hệ sau Sự phát triển mạng Hình 3.2 Xu hướng phát triển mạng và dịch vụ theo quan điểm xây dựng một mạng hoàn toàn mới Ở Việt Nam, việc xây dựng mạng NGN được nhìn dưới 2 góc độ của 2 nhà khai thác dịch vụ khác nhau: các nhà cung cấp dịch vụ truyền thống (chủ yếu là thoại) còn gọi là các nhà cung cấp dịch vụ cố định ESP – Established Service Provider, và các nhà cung cấp dịch vụ mới (các dịch vụ số liệu, Internet, ) còn có tên gọi là các nhà cung cấp dịch vụ Internet: ISP – Internet Service Provider hoặc các nhà cung cấp dịch vụ ứng dụng: ASP – Application Service Provider. Các nhà khai thác dịch vụ truyền thống bao gồm Tập đoàn bưu chính viễn thông Việt Nam (VNPT), công ty viễn thông quân đội (Vietel), công ty cổ phần viễn thông Sài Gòn (SPT), công ty viễn thông điện lực (ETC). Các nhà khai thác dịch vụ mới bao gồm FPT, SPT, Netnam, 57
  58. Các ESP có xu hướng xây dựng mạng thế hệ sau theo quan điểm dựa trên cơ sở mạng hiện tại và các ISP/ASP theo quan điểm xây dựng một mạng hoàn toàn mới. 3.1.1 Giải pháp xây dựng NGN trên cơ sở mạng hiện tại Nội dung của giải pháp: Cơ sở hạ tầng của mạng hiện tại được tổ chức lại và phát triển dần lên. Nâng cấp các thiết bị chuyển mạch hiện có (công nghệ TDM) để hỗ trợ các dịch vụ mới chất lượng cao như video, số liệu. Đồng thời có thể bổ sung một số chuyển mạch mềm tại một số nút mạng chính, đặc biệt là trung tâm điều khiển và ứng dụng của các vùng lưu lượng. Giải pháp này có 2 phương án: Phƣơng án 1: áp dụng cho các nhà khai thác mạng có yêu cầu hiện đại hóa và mở rộng mạng trong thời gian ngắn. Gồm 4 bước: Bước 1: Đối với mạng thoại TDM thì triển khai mạng truyền dẫn SDH, mạch chuyển mạch ATM đồng thời bổ xung thiết bị Telephony Server để quản lý thoại. Đối với mạng số liệu thì giữ nguyên kỹ thuật IP/MPLS hoặc ATM/FR và trang bị thêm các cổng Gateway, thực hiện kết nối giữa mạng thoại và mạng số liệu ở các nút ở biên mạng. Bước 2: tiếp tục phát triển kỹ thuật SDH, ATM cho mạng thoại. Với mạng số liệu thì phát triển thành mạng đa dịch vụ IP/MPLS và tăng cường khả năng của các cổng giao tiếp ở các nút biên mạng (chúng có nhiệm vụ kết nối giữa mạng đa dịch vụ và mạng thoại). Trang bị thêm IP Telephone Server cho quản lý mạng đa dịch vụ. Bước 3: xây dựng chỉ còn một mạng thống nhất cho thoại và dữ liệu nhưng lúc này chưa phải mạng tích hợp đa dịch vụ hoàn toàn. Mạng PSTN sử dụng TDM sẽ không còn tồn tại riêng biệt. Tiếp tục tích hợp và phát triển mạng đa dịch vụ IP/MPLS. 58
  59. Bước 4: hình thành mạng tích hợp đa dịch vụ hoàn toàn. Lúc này chỉ còn mạng đa dịch vụ IP/MPLS tồn tại và phát triển. Và Telephony Server và IP Telephone Server sẽ quản lý mạng đa dịch vụ. Phƣơng án 2: Áp dụng cho những nhà khai thác mạng có yêu cầu hiện đại hóa và mở rộng mạng trong thời gian dài. Phương án này cũng gồm 4 bước: Bước 1: không phát triển thêm mạng thoại TDM từ đây về sau. Với mạng số liệu thì giữ nguyên mạng chuyển mạch gói IP/MPLS hoặc ATM/FR và trang bị thêm các cổng Gateway. Bước 2 đến bước 4 giống các bước 2, 3,4 ở phương án 1. Ưu điểm: - Giá thành đầu tư ban đầu thấp. - Có khả năng cung cấp dịch vụ mới, dịch vụ truy nhập băng rộng. - Bảo vệ tối đa nguồn vốn đã đầu tư trên mạng hiện tại. Nhược điểm: - Việc nâng cấp các chuyển mạch hiện có từ TDM sang IP/ATM chỉ là bước đệm mà không thay đổi được về cơ bản công nghệ chuyển mạch phục vụ cho các dịch vụ mới. Điều này có nghĩa là không giải quyết được vấn đề cơ bản là khả năng tạo dịch vụ mới cũng như nguyên tắc tổ chức mạng thế hệ mới. Và nó sẽ làm phát sinh nhiều vấn đề chuyển tiếp và làm tăng chi phí về sau. - Chi phí đầu tư ban đầu thấp nhưng chi phí vận hành và khai thác sẽ cao hơn so với mạng hiện tại do không có được sự quản lý thống nhất trong toàn mạng. - Khả năng cạnh tranh kém khi xuất hiện các nhà khai thác thế hệ mới vì họ có cơ sở hạ tầng mạng NGN hoàn toàn mới. 59
  60. 3.1.2 Giải pháp xây dựng NGN hoàn toàn mới Nội dung giải pháp: Giải pháp này chủ trương giữ nguyên mạng hiện tại và không đầu tư tiếp tục phát triển. Tập trung nhân lực và tài lực vào việc triển khai các tổng đài đa dịch vụ thế hệ sau. Mạng NGN được xây dựng trước hết phải có khả năng cung cấp các nhu cầu về dịch vụ của mạng hiện tại đã quen thuộc với khách hàng. Sau đó triển khai một số nhu cầu dịch vụ mới. Kế tiếp triển khai thêm nhiều dịch vụ mới trên nền NGN nhưng phải cân bằng giữa cung và cầu. Các nút chuyển mạch của hai mạng này sẽ liên hệ với nhau rất ít (chủ yếu phục vụ cho các dịch vụ IP) thông qua các cổng giao tiếp Media Gateway. Ưu điểm: - Thay đổi hoàn toàn cấu trúc mạng, tăng khả năng cạnh tranh. - Hoàn toàn sẵn sàng cung cấp các dịch vụ mới, dịch vụ truy nhập. - Thời gian triển khai nhanh chóng. - Độ tương thích cao. - Quản lý thống nhất, tập trung. Nhược điểm: - Giá thành đầu tư ban đầu cao. - Rủi ro do dự báo nhu cầu vượt ngưỡng dẫn đến hậu quả đầu tư thấp, thời gian hoàn vốn lâu. - Tăng chi phí do phải tăng cường lực lượng lao động kỹ thuật mới. Nhận xét: Có nhiều giải pháp được đưa ra nhằm đáp ứng nhu cầu của các nhà khai thác muốn chuyển từ mạng truyền thống sang mạng thế hệ sau. Tùy vào hiện trạng mạng, quan điểm của chính nhà khai thác mà giải pháp thích hợp được lựa chọn. Và việc xây dựng mạng phải dựa vào nhu cầu mới của khách hàng 60
  61. để thu hút và giữ khách hàng. Điều này cũng có nghĩa là các nhà khai thác sẽ triển khai mạng NGN theo hướng để đáp ứng cho nhu cầu phát triển dịch vụ của khách hàng. 3.2 TÌNH HÌNH TRIỂN KHAI MẠNG NGN TẠI VIỆT NAM Sự phát triển mạng NGN tại Việt Nam là một xu thế tất yếu, phù hợp với quá trình phát triển NGN trên thế giới. Không nằm ngoài xu hướng chung đó, Việt Nam cũng đang có những bước phát triển mạng NGN của riêng mình. Hiện nay có 6 doanh nghiệp được phép của Bộ bưu chính, viễn thông cho phép cung cấp các dịch vụ viễn thông là Tập đoàn bưu chính viễn thông Việt Nam (VNPT), Công ty điện tử viễn thông quân đội (Vietel), Công ty viễn thông điện lực, Công ty cổ phần dịch vụ Bưu chính viễn thông Sài Gòn (STP), Hà Nội Telecom, Công ty viễn thông Hàng hải. Trong đó ngoại trừ công ty viễn thông Hàng hải, các công ty khác đều đang cung cấp dịch vụ gọi VoIP đường dài trong nước và quốc tế. Trong phần này sẽ nêu ra tình hình triển khai mạng NGN của VNPT. 3.2.1 Mục tiêu phát triển Như ta biết mạng viễn thông hiện tại là sự hoạt động của các mạng riêng lẻ: mạng thoại cố định chuyển mạch kênh TDM, mạng điện thoại di động công nghệ truy nhập GSM, CDMA, mạng Internet chuyển mạch gói IP. Để đáp ứng việc phát triển cơ sở hạ tầng mạng viễn thông Việt Nam, việc xây dựng cấu trúc mạng viễn thông thế hệ mới NGN được định hướng tới các mục tiêu cụ thể sau đây: Đáp ứng nhu cầu cung cấp các dịch vụ viễn thông hiện nay và các loại dịch vụ viễn thông thế hệ mới bao gồm: - Các dịch vụ cơ bản. - Các dịch vụ gia tăng. - Các dịch vụ truyền số liệu, Internet và công nghệ thông tin. 61
  62. - Các dịch vụ đa phương tiện. Mạng có cấu trúc đơn giản: - Giảm thiểu đa số cấp chuyển mạch và chuyển tiếp truyền dẫn. - Nâng cao hiệu quả sử dụng, chất lượng mạng lưới và giảm thiểu chi phí khai thác bảo dưỡng. Độ linh hoạt và tính sẵn sàng cao, năng lực tồn tại mạnh: - Tiến tới tích hợp mạng thoại và mạng số liệu trên mạng đường trục băng rộng. - Cấu trúc mạng phải có độ linh hoạt cao, đảm bảo an toàn mạng lưới và chất lượng dịch vụ. - Dễ dàng mở rộng dung lượng, triển khai dịch vụ mới. Việc thay đổi cấu trúc mạng hiện tại được tiến hành từng bước theo điều kiện thực tế cho phép. Tận dụng tối đa các thiết bị trên mạng ISDN, PSTN hiện có để phát triển dịch vụ N-ISDN, đáp ứng nhu cầu dịch vụ Internet, ATM, FR, Triển khai hoàn thiện hệ thống quản lý mạng, quản lý dịch vụ. Tăng cường khả năng cạnh tranh trong môi trường hội nhập và mở cửa. 3.2.2 Nguyên tắc tổ chức xây dựng mạng thế hệ mới Các nhu cầu về dịch vụ mới nằm chủ yếu ở các tỉnh và thành phố lớn có nền kình tế, văn hóa, xã hội phát triển, các dịch vụ mới đáp ứng cho việc phát triển kinh tế, giáo dục, giải trí như: thương mại điện tử, giáo dục từ xa, chăm sóc sức khỏe qua mạng, trò chơi trên mạng thời gian thực, Còn phần đông các địa phương nhất là vùng sâu, vùng xa thì mật độ thuê bao thấp, nhu cầu chủ yếu là điện thoại dùng để liên lạc, và không có những yêu cầu về dịch vụ mới. Ngoại trừ một số thành phố lớn thì còn lại một số lượng lớn các tỉnh có số lượng thuê bao và lưu lượng không lớn nhưng vẫn hình thành mạng riêng theo địa bàn hành chính. Đặc biệt một số tỉnh sau khi tiến hành tách tỉnh theo 62
  63. địa bàn hành chính thì cũng hình thành mạng mới với các tổng đài Host nội hạt mới tạo nên một số vấn đề phức tạp trong việc cung cấp dịch vụ, ví dụ: hai thuê bao trước đây thuộc một tỉnh khi thực hiện cuộc gọi thì lưu lượng cuộc gọi chỉ cần đi qua hai tổng đài vệ tinh và một tổng đài Host, giá cước được tính theo cước nội hạt. Khi tách tỉnh, hai thuê bao này ở hai tỉnh kề nhau, khi thực hiện cuộc gọi thì lưu lượng cuộc gọi sẽ phải đi qua hai tổng đài Host và vòng qua tổng đài Toll chuyển mạch liên tỉnh và giá cước tính theo cước đường dài. Do đó chất lượng dịch vụ viễn thông được cung cấp sẽ bị ảnh hưởng rất nhiều bởi cấu hình và cách thức tổ chức khai thác này. Mặt khác nếu xét ở góc độ kinh tế thì cách tổ chức khai thác, cung cấp dịch vụ như vậy hiệu quả không cao, không khai thác được hết lưu lượng ở tất cả các vùng, mà chỉ khai thác hiệu quả được ở các thành phố lớn. Do đó cấu trúc mạng thế hệ sau được xây dựng dựa trên phân bố thuê bao theo vùng địa lý, không tổ chức theo địa bàn hành chính mà phân theo vùng lưu lượng. Cụ thể mạng viễn thông Việt Nam được tổ chức thành các vùng lưu lượng như sau: - Vùng lưu lượng 1: bao gồm các tỉnh phía Bắc từ Hà Giang đến Hà Tĩnh (trừ các tỉnh/thành phố thuộc vùng 2). - Vùng lưu lượng 2: bao gồm Hà Nội và một số tỉnh lân cận. - Vùng lưu lượng 3: bao gồm toàn bộ thuê bao thuộc 15 tỉnh miền Trung và Tây Nguyên từ Quảng Bình đến Lâm Đồng. - Vùng lưu lượng 4: bao gồm TP.Hồ Chí Minh và một số tỉnh lân cận. - Vùng lưu lượng 5: bao gồm các tỉnh/thành phố phía Nam và đồng bằng sông Cửu Long (trừ các tỉnh/thành phố thuộc vùng 4). 63
  64. 3.2.3 Cấu trúc mạng viễn thông thế hệ mới của Việt Nam Lớp ứng dụng Hà Nội TP. HCM và dịch vụ Lớp điều khiển Lớp truyền tải ATM+IP ATM+IP ATM+IP Cấp đường trục >2.5 Gb/s L ATM+IP ớ ATM+IP Mặt A p qu Mặt B ả ATM+IP n lý ATM+IP >2.5 Gb/s >155 Mb/s ATM+IP ATM+IP ATM+IP >155 Mb/s C ấp ATM+IP ATM+IP ATM+IP ATM+IP ATM+IP vùng KV phía Bắc KV Hà KV Miền Trung KV Khu vực (trừ Hà Nội) Nội và Tây Nguyên TP. HCM phía Nam Lớp truy nhập Hình 3.3 Cấu trúc mạng NGN của Việt Nam Lớp ứng dụng và dịch vụ Lớp ứng dụng có chức năng cung cấp các dịch vụ thoại, phi thoại, dịch vụ đa phương tiện, các dịch vụ giá trị gia tăng, dịch vụ băng rộng, Được tổ chức thành một cấp trong toàn mạng nhằm cung cấp dịch vụ đến tận thuê bao một cách thống nhất và đồng bộ. 64
  65. Số lượng nút ứng dụng và dịch vụ phụ thuộc vào lưu lượng dịch vụ, số lượng và loại hình dịch vụ của từng vùng. Nút ứng dụng và dịch vụ được kết nối ở mức Gigabit Ethernet 1+1 với nút điều khiển và được đặt tại các trung tâm mạng NGN tại Hà Nội và Thành phố Hồ Chí Minh cùng với các nút điều khiển. Lớp điều khiển Lớp điều khiển có chức năng điều khiển lớp chuyển tải/lõi và lớp truy nhập cung cấp các dịch vụ mạng với bất kỳ loại giao thức báo hiệu nào. Lớp điều khiển được tổ chức thành một cấp cho toàn mạng và được phân theo vùng lưu lượng nhằm giảm tối đa cấp mạng. Số lượng nút điều khiển phụ thuộc vào lưu lượng của từng vùng và được tổ chức thành từng cặp (mặt A và B) nhằm đảm bảo tính an toàn mạng lưới khi xảy ra sự cố. Mỗi một nút điều khiển được kết nối đến một cặp nút chuyển mạch ATM/IP đường trục. Lớp ứng dụng và Hà Nội TP HCM dịch vụ Trung M. M. i ộ Hà N Hà TPHCM c ắ Nam B M. Lớp điều khiển M. Lớp truyền tải Hình 3.4 Cấu hình kết nối lớp điều khiển và ứng dụng mạng NGN 65
  66. Lớp điều khiển gồm nhiều module như module điều khiển kết nối ATM, điều khiển định tuyến kết nối IP, điều khiển kết nối cuộc gọi thoại, báo hiệu số 7, các bộ điều khiển này sẽ được đặt tương ứng với vị trí của các nút chuyển mạch ATM/IP Core tại 5 vùng lưu lượng. Lớp truyền tải Lớp truyền tải phải có khả năng truyền tải cả hai loại lưu lượng ATM và IP được tổ chức thành hai cấp: Cấp đường trục quốc gia và cấp vùng thay vì 4 cấp như hiện nay: Cấp đường trục quốc gia: Gồm toàn bộ các nút chuyển mạch đường trục (Core ATM+IP) và các tuyến truyền dẫn đường trục được tổ chức thành hai mặt: Plane A&B, kết nối chéo giữa các nút đường trục ở mức ít nhất là 2.5 Gbps nhằm đảm bảo độ an toàn mạng, có nhiệm vụ chuyển mạch cuộc gọi giữa các vùng lưu lượng. Số lượng và quy mô nút chuyển mạch đường trục quốc gia phụ thuộc vào lưu lượng phát sinh trên mạng đường trục. Trong giai đoạn đầu, các nút chuyển mạch đường trục được trang bị với khả năng chuyển mạch ATM < 20 Gbps và khả năng định tuyến tối đa là 300 triệu gói/giây. Các nút này được đặt tại các trung tâm truyền dẫn liên tỉnh VTN. Cấp vùng: Các thành phần ở cấp vùng là các nút chuyển mạch nội vùng ATM+IP và các bộ tập trung nội vùng. Nhiệm vụ chính của chúng là đảm bảo cho việc chuyển mạch cuộc gọi trong một vùng và sang vùng khác. Các nút chuyển mạch nội vùng được kết nối ở mức tối thiểu là 155 Mbps. Và chúng được đặt tại các vị trí các tổng đài chủ Host hiện nay và được kết nối trực tiếp với nhau theo dạng vòng ring. Hơn thế nữa, chúng được nối đến các nút chuyển mạch đường trục ở cả 2 mặt phẳng bằng các tuyến truyền dẫn nội vùng (155 Mbps). 66
  67. Một điều cần lưu ý là các nút chuyển mạch nội vùng phải tích hợp tính năng “máy chủ” truy nhập băng rộng từ xa BRAS (Broadband Remote Access Server) nhằm thực hiện chức năng điểm truy nhập IP POP băng rộng cho các thuê bao xDSL. Số lượng và quy mô các nút chuyển mạch của một vùng trong giai đoạn đầu phụ thuộc vào nhu cầu dịch vụ tại vùng đó. Trong giai đoạn ban đầu, các nút chuyển mạch có khả năng chuyển mạch tối đa 2.5 Gbps và khả năng định tuyến không lớn hơn 500 ngàn gói/giây. Các bộ tập trung ATM/IP cũng được kết nối với các nút chuyển mạch nội vùng bằng các tuyến dẫn tối thiểu 155 Mbps. Ngoài ra các bộ tập trung này được kết nối đến các bộ truy nhập ở lớp truy nhập bằng các tuyến n*E1. Nhiệm vụ của các bộ tập trung này là tập trung các luồng E1 thành luồng ATM. Và chúng được đặt tại các điểm truyền dẫn nội tỉnh hiện nay. Số lượng và quy mô các bộ tập trung phụ thuộc vào số nút truy nhập và số thuê bao của các nút truy nhập. Lớp truy nhập Lớp truy nhập gồm các nút truy nhập hữu tuyến và vô tuyến được tổ chức không phụ thuộc theo địa giới hành chính. Các nút truy nhập của các vùng lưu lượng sẽ được nối tới các nút chuyển mạch đường trục của vùng tương ứng (thông qua nút chuyển mạch nội vùng) mà không kết nối tới các nút chuyển mạch đường trục của vùng khác. Nút truy nhập kết nối với nút chuyển mạch nội vùng bằng các kênh có tốc độ phụ thuộc vào số lượng thuê bao tại nút truy nhập đó (n*E1). Các thiết bị truy nhập thế hệ mới phải có khả năng cung cấp cổng dịch vụ POST, ATM, IP, FR, IP VPN, xDSL, VoIP, VoATM, 67
  68. 3.2.4 Triển khai mạng NGN của VNPT 3.2.4.1 Giải pháp SURPASS của Siemens Hiện nay NGN của VNPT đang được triển khai dựa trên giải pháp SURPASS của Siemens. Đây là mạng có hạ tầng thông tin duy nhất dựa trên công nghệ chuyển mạch gói được VNPT lựa chọn để thay thế cho mạng chuyển mạch kênh truyền thống. Hệ thống SURPASS hướng tới những mục tiêu sau:  Tách biệt điều khiển cuộc gọi/dịch vụ với môi trường truyền thông tin để cho phép các nhà cung cấp dịch vụ giữ được các khoản đầu tư phát triển dịch vụ của họ và đồng thời tận dụng những công nghệ mới nhất trong lĩnh vực truyền dẫn và chuyển tải thông tin.  Hướng tới mạng hội tụ đa dịch vụ, nhiều loại hình truy nhập dịch vụ.  Tận dụng các đầu tư đã có trong hệ thống chuyển mạch TDM truyền thống, nơi mà Siemens có nhiều năm kinh nghiệm phát triển các ứng dụng, dịch vụ thoại và các tính năng thông minh của tổng đài EWSD, bằng việc đưa ra các giải pháp nâng cấp thuận lợi sang môi trường mạng đa dịch vụ chuyển mạch gói. Giải pháp này gồm 4 vấn đề: - Mạng chuyển mạch thế hệ mới - Mạng truy nhập thế hệ mới - Mạng truyền tải thế hệ mới - Mạng quản lý thế hệ mới Mạng chuyển mạch thế hệ mới: Cấu trúc chuyển mạch của SURPASS dựa trên mô hình do MSF (Multiservice Switching Forum – Diễn đàn chuyển mạch đa dịch vụ) đưa ra. 68
  69. Đối với VoIP đang triển khai thì vấn đề cần quan tâm nhất trong chuyển mạch thế hệ mới là trung kế ảo (VT - Virtual Trunking). Trung kế ảo là khái niệm chỉ đường trung kế được thiết lập một cách logic trong Softswitch để quản lý đường trung kế tương ứng đối với cổng phương tiện. Trung kế ảo cho phép tích hợp các dạng dữ liệu khác nhau trên cùng một mạng và cung cấp khả năng mở rộng mạng một cách linh hoạt. Sử dụng trung kế ảo cho phép tính toán các thông số mạng: số kết nối tối đa, đặc tính của từng thuê bao, băng thông cung cấp cho từng dịch vụ, báo hiệu, khả năng xử lý và QoS tối ưu theo yêu cầu. Giải pháp SURPASS của Siemens sử dụng báo hiệu SS7. Mạng truy nhập thế hệ mới: SIEMENS đưa ra giải pháp SURPASS Next Generation Access bao gồm các thành phần: - SURPASS Evolving Voice Access: Cho phép kết nối tất cả các loại giao diện của các thuê bao hiện tại tới mạng lõi NGN, hỗ trợ các dịch vụ chuyển mạch lớp 5 một cách đầy đủ thông qua các giao diện mở và các giao diện này có thể giao tiếp với mạng hiện tại TDM hay mạng IP. Quan trọng nhất là giải pháp này cho phép việc tiến lên mạng thế hệ sau có thể thực hiện nhanh chóng tại bất kỳ thời điểm nào. - Truy nhập băn rộng SURPASS DSL: Cho phép sử dụng truy nhập băng rộng (ở đây là công nghệ DSL). - Truy nhập đa dịch vụ SURPASS: cho phép truy nhập tất cả các dịch vụ băng hẹp cũng như băng rộng trên cùng một platform. SIEMENS cũng đưa ra một giải pháp cho quá trình phát triển quá độ. Các mạng PSTN, ATM/ IP cùng tồn tại và mạng ATM/ IP chưa xử lý ứng dụng thoại. Các sản phẩm tương ứng cho giải pháp này là hiA (hiA7100, hiA7300). 69
  70. Mạng truyền tải thế hệ mới: Truyền tải thế hệ sau sử dụng công nghệ truyền dẫn quang (SDH, DWDM) và truyền dẫn vi ba. Mạng quản lý thế hệ mới: Next Generation Management giúp tối ưu cấu hình và hoạt động, bảo mật cho các thành phần tạo thành NGN trong SURPASS. Nguyên lý của giải pháp này là dựa trên quản lý phần tử, quản lý miền và các ứng dụng. Phần quản lý mạng hỗ trợ chức năng OAM (quản lý, vận hành, bảo dưỡng) phát hiện xử lý lỗi, định dạng cấu hình, tính cước và quản lý hoạt động cũng như bảo mật mạng. Hệ thống quản lý mạng viễn thông TNMS quản lý từ các phần tử đến các miền hoạt động sử dụng công nghệ quang. Các miền hoạt động có thể là PDH, SDH, DWDM, Bộ tích hợp truy nhập quản lý truy nhập thế hệ sau, có cấu trúc mở theo mô hình client/ server, có tính module và linh hoạt. 3.2.4.2 Tình hình triển khai mạng NGN của VNPT Tháng 12/2003, Tổng Công ty Bưu chính Viễn thông Việt Nam (VNPT) đã lắp đặt xong giai đoạn 1 mạng viễn thông thế hệ mới - New Generation Network (NGN), chủ yếu tập trung lắp đặt mạng lõi của NGN. Mạng NGN với hai Softswitch hiQ9200 đặt tại Hà Nội và TP.HCM. Ba Router lõi: Hà Nội, TP.HCM, Đà Nẵng có khả năng chuyển mạch là 160 Gbps. Có 24 PoP đặt tại 24 tỉnh và thành phố, mỗi PoP bao gồm một Media Gateway kết nối với mạng PSTN phục vụ cho dịch vụ VoIP, và có thể có bộ BRAS kết nối trực tiếp với thiết bị DSLAM – HUB có khả năng chuyển mạch 10 Gbps, có thể hỗ trợ các kết nối ADSL, SHDSL. 70
  71. Các đường truyền kết nối giữa các Router lõi với nhau, cũng như Router lõi và Router vùng là 155 Mbps. Lớp truyền vận của NGN sử dụng công nghệ IP/MPLS. Hình 3.5 Mô hình NGN của VNPT Để nâng cao hơn nữa năng lực của mạng lưới, VNPT quyết định đầu tư tiếp pha 2. Đến ngày 15/08/2004 đã hoàn thành và đưa vào sử dụng. VNPT đã hoàn tất triển khai một mạng NGN phục vụ cho truyền dẫn liên tỉnh. Hiện tại đơn vị quản lý và khai thác mạng lưới NGN này là công ty Viễn Thông Liên Tỉnh - VTN. Các dịch vụ do mạng NGN mang lại hiện tại có thể thấy đó là: dịch vụ giải trí bình chọn 1900, 1800; các dịch vụ mạng riêng ảo nội hạt và liên tỉnh. 71
  72. Năm 2005: tăng số nút điều khiển ATM+IP nhằm mở rộng vùng phục vụ của mạng NGN tới các tỉnh và thành phố còn lại, bảo đảm cung cấp dịch vụ xDSL tại 61 tỉnh thành. Tháng 11/ 2006 dự án mở rộng NGN pha 4. VNPT đã triển khai NGN xuống các tổng đài và hệ thống truyền dẫn nội hạt. Cuối năm 2008 VNPT đã hoàn thành triển khai toàn bộ mạng lưới NGN, bao gồm: hoàn tất phần mạng lõi dựa trên công nghệ IP và mở rộng phần truy nhập tới mạng nội hạt. Việc hoàn tất triển khai NGN sẽ giúp cho VNPT giảm chi phí đầu tư mở rộng mạng lưới, giảm chi phí vận hành khai thác và bảo dưỡng. Đến nay VNPT đã hoàn tất xây dựng mạng NGN. VNPT đã sẵn sàng cung cấp tất cả các dịch vụ băng rộng vơi chất lượng dịch vụ có tiêu chuẩn quốc tế. Đây sẽ là lợi thế của VNPT khi mà xu hướng các dịch vụ băng rộng sẽ phát triển mạnh mẽ trong tương lai. Tóm lại việc triển khai chuyển đổi từ mạng thế hệ cũ sang thế hệ mới (NGN) với c 1, 2, 3, 4 IP/MPLS . Trong giai đoạn 2010 - 2015, mục tiêu phát triển cốt lõi của mạng viễn thông liên tỉnh là nhằm vào khả năng đa dạng hóa dịch vụ, vào tính hội tụ giữa thoại và số liệu, vào tính thống nhất giữa cố định và di động, vào tính tích hợp giữa mạng viễn thông và mạng máy tính và vào tính tự động hóa trong quá trình quản lý và điều hành mạng lưới với khẩu hiệu viễn thông quốc tế “Thông tin mọi nơi, mọi lúc, bất cứ hình thức nào”. Các dịch vụ viễn thông của xu hướng sự hội tụ này có thể kể đến các dịch vụ IPTV, truyền hình hội nghị, các dịch vụ cho 3G 72
  73. KẾT LUẬN Mạng thế hệ sau NGN đang được nghiên cứu, chuẩn hoá bởi các tổ chức viễn thông lớn trên thế giới nhằm đáp ứng nhu cầu càng tăng về tính mở, sự tương thích và linh hoạt để cung cấp đa dịch vụ, đa phương tiện với các tính năng ngày càng mở rộng. Qua ba tháng làm đồ án tốt nghiệp với đề tài “Nghiên cứu NGN và ứng dụng” em đã tìm hiểu được những vấn đề sau:  Tổng quan về mạng NGN.  Cấu trúc mạng NGN cùng với các giao thức báo hiệu và điều khiển, và những dịch vụ chủ yếu trong mạng thế hệ mới.  Tình hình triển khai NGN tại Việt Nam. Trong quá trình làm đồ án, do trình độ, kiến thức thực tế còn hạn chế, nên đồ án không tránh khỏi những thiếu sót và chưa thật sự sâu sắc. Em rất mong nhận được sự góp ý của các thầy cô và các bạn để hoàn thiện và phát triển đề tài này. Cuối cùng em xin chân thành cảm ơn các thầy cô trong bộ môn Điện tử Viễn thông – Trường Đại Học Dân Lập Hải Phòng, đặc biệt là thầy giáo Th.s Mai Văn Lập đã nhiệt tình giúp đỡ em hoàn thành cuốn đồ án này. Hải Phòng, ngày tháng năm 2010 Sinh viên thực hiện Đỗ Thị Huyền 73
  74. TÀI LIỆU THAM KHẢO 1. Mạng viễn thông thế hệ sau – TS Nguyễn Quý Minh Hiền, Viện khoa học kỹ thuật bưu điện. 2. Đề tài: “Nghiên cứu chuyển mạch mềm” Phòng công nghệ, Công ty Thông tin Viễn thông Điện lực, 2000. 3. Đồ án tốt nghiệp – Nguyễn Anh Quân trường ĐHBK Hà Nội – người hướng dẫn Giáo viên Đỗ Hoàng Tiến (Đề tài: Mạng NGN và các giao thức báo hiệu và điều khiển). 4. Đồ án tốt nghiệp – Bùi Quốc Nam Học Viện CN Bưu chính Viễn Thông – người hướng dẫn Th.s Dương Văn Thành (Đề tài: NGN và ứng dụng). 74